Modern cosmology 2: Type Ia supernovae and Λ

- Distances at *z* ~1
- Type Ia supernovae
- SNe Ia and cosmology
- Results from the Supernova Cosmology Project, the High z Supernova Search, and the HST
- Conclusions

*PHY*306

Type Ia Supernovae

- Observational properties
 - no hydrogen lines, but strong Si line at ~600 nm
 - occur in all types of galaxies; about 1/galaxy/ century
 - ▶ peak absolute magnitude ~-19 to -20
 - peak followed by steady exponential decay

1

2

PHY306

Type Ia Supernovae

PHY306

Type Ia Supernovae

- Physical properties
 - gravitational collapse of white dwarf followed by runaway carbon fusion
 - unclear whether collapse triggered by coalescence of double-white-dwarf system or accretion from mainsequence or giant companion
 - ▶ either way, 1.4M_☉ of carbon/ oxygen blows up!

3

4

PHY306

SNe Ia and Cosmology

Aim: investigate deviations from Hubble's law at large z

• Requirements

- ▶ range out to $z \sim 1$
- ► no evolutionary effects
 - or evolutionary effects under control
- reasonable statistics
 - ► tens or hundreds of galaxies over good range of z

- Type Ia supernovae
 - ▶ current record *z* ~ 1.6
 - ► expect effect is small
 - ► 1.4 M_☉ of carbon much the same at any time
 - ► current sample ~200
 - several large-scale surveys designed to pick up candidates for spectroscopic follow-up

PHY306

Basic requirements

- Identify candidates
 - survey by looking at difference images
 - ► follow up spectroscopically and with photometry
- Standardise light-curves
 - ▶ including absorption effects
 - this gives M, and hence μ
- Get redshift from galaxy spectrum

PHY306

Type Ia supernovae as "standardisable candles"

- SNe Ia do not all have *exactly* the same absolute magnitude
 - but absolute magnitude is strongly correlated with rate of decline (faster = fainter)
 - ► apply "stretch factor" to compensate for this
 - also need to correct for spectral redshift and interstellar absorption

PHY306

Type Ia supernovae as "standardisable candles"

• Methods for standardising light curves

- ► Δm_{15}
 - look at decrease in brightness
 15 days after peak
- ► MLCS
 - "Multi-colour Light Curve Shape"
 - fit light curve to templates derived from nearby SNe Ia
 - multi-colour aspect allows correction for absorption

PHY306

The nearby sample

Results from SCP and HZSS

- Data from two independent teams are consistent
 - ▶ both show SNe at large z fainter than expected for flat matter-dominated universe (i.e. q < ½)</p>
 - clear tendency to lie above "empty universe" line (i.e. q < 0)

PHY306

Perlmutter et al., 1998

Results from HST

PHY306

Going to higher z

- High z SNe identified using HST ACS data Riess et al. (*ApJ* 659 (2007) 98)
- Combine with low and intermediate z samples
 - ► ~200 well analysed SNe ^{3.0}_{2.5}
- See acceleration to $z \sim 0.5$ $\stackrel{2.0}{\mathbb{P}}$ $\stackrel{1.5}{1.5}$ and deceleration earlier $\stackrel{1.5}{\mathbb{P}}$ $\stackrel{1.5}{1.0}$
 - very consistent with a model with both Ω_m and Ω_Λ non-zero

PHY306

Going to higher z

- Wider range of *a* reduces degeneracy between Ω_m and Ω_Λ
 - result is consistent with a flat universe in which Ω_Λ ≈ 0.7 and Ω_m ≈ 0.3
 - this is the "benchmark universe" derived from the WMAP results (see later)
- Switch from acceleration to deceleration eliminates several alternative explanations

PHY306

Conclusion

- Now several independent teams reporting results on Type Ia supernovae
 - results consistently require positive Ω_Λ and are consistent with (but do not require) k = 0
 - definitely not consistent with $\Omega_m = 1$, k = 0
 - definitely requires $q_0 < 0$ (acceleration)
 - ► turnover from acceleration to deceleration at z ~ 0.5

PHY306