Modern cosmology 1: The Hubble Constant

- Extragalactic distance measurements
- Classical Cepheid calibration
- HST Key Project results
- Independent measurements

PHY306

Extragalactic distance measurements

- Cepheid-calibrated
 - ► Whole-galaxy methods: <u>Tully-Fisher</u>, <u>fundamental</u> <u>plane</u>, <u>surface-brightness fluctuations</u>
 - ► <u>Type Ia supernovae</u>
- Cepheid-checked
 - ► <u>Type II supernovae</u>
- Cepheid-independent
 - Sunyaev-Zeldovich effect
 - Gravitational lensing

1

PHY306

Hubble diagram from HST

Systematic errors

• The Key Project systematic error budget:		
► LMC distance:	±5%	Systematics
► HST WFPC2 zero poin	$t: \pm 3^{1/2}\%$	dominated.
► Reddening estimate:	±1%	No single source
► Metallicity effects:	±4%	dominant – so improvement
► Bias:	±1%	difficult
► Crowding:	+5%,-(0%
► Bulk flows:	±5%	
• Total:	+10%,	-9%

PHY306

4

3

Results for H_o

• Results are all consistent within statistical errors

- ► FP a bit high
- ▶ mean 72±3±7 km/s/Mpc 100
- SN II result very consistent with earlier result from Schmidt et al.
- ► Error is dominated 5 by systematics, so 1² little point in collecting more data

PHY306

Update on H_o

- Since Key Project, systematics improved by
 - ▶ using ACS/WFC3 instead of WFPC2 on HST
 - ▶ better Cepheid parallaxes (HST)
 - using maser galaxy NGC 4258 instead of LMC as basis of distance scale
 - ▶ focus on SNe Ia as distance indicator
- Result is to halve systematic error from ±10% to ±5% (Riess et al., *ApJ* 699 (2009) 536)
 - ▶ result: 74.2±3.6 km s⁻¹ Mpc⁻¹

PHY306

6

Independent measurements

160

- <u>Gravitational lensing</u> → and <u>Sunyaev-Zeldovich</u> → distances are in principle geometric
 - ► both tend to give lower values (~60 km/s/Mpc)
 - both are new and difficult techniques
- CMB fits give completely consistent result
 - ► 70.1 ± 1.3 km/s/Mpc (WMAP+BAO+SN,2008)

PHY306

Conclusions

- Precision of Hubble constant measurements driven by systematic errors in calibration
 - best long-range geometric measurements are lower than best conventional values, but not convincingly so
- Best estimate (HST Key Project 2001, WMAP fit 2008) is ~70 km/s/Mpc
 - ▶ error ~10% from HST, ~2% from CMB
 - ▶ much better than factor 2 error in 1980s!

8