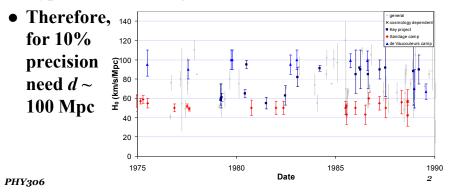
Modern cosmology 1: The Hubble Constant


- Extragalactic distance measurements
- Classical Cepheid calibration
- HST Key Project results
- Independent measurements

PHY306

Measuring H_o

1

- From measurements in 1970s and 80s safe to assume that $40 < H_0 < 100$ km/s/Mpc
- Typical motions of galaxies in clusters ~1000 km/s

Distance scales

• At $d \sim 100$ Mpc, $m - M \sim 35$

- ▶ therefore no chance of using ordinary stars
- must use objects of brightness comparable to whole galaxy
 - ► galaxy brightness
 - ▶ galaxy angular diameter
 - ► supernovae

• Few primary distance indicators at this range

▶ gravitational lensing, Sunyaev-Zeldovich effect

3

4

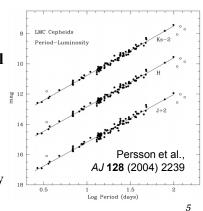
▶ rest require calibration

PHY306

Calibration

- Ideal calibrator would have
 - ► no systematic errors
 - ▶ e.g. geometric methods such as parallax

▶ good statistics

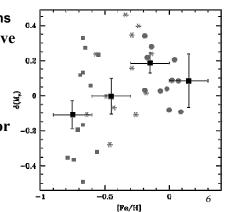

- calibrator object reasonably common
- Iong enough range to overlap with methods it's being used to calibrate
 - ▶ i.e. out to at least several Mpc
 - ▶ so, definitely not parallax!

 \rightarrow classical Cepheids

Classical Cepheids

• Advantages as calibrator:

- ▶ bright: $M \sim -4$, so at 10 Mpc $m \sim 26$
 - faint but not impossible
- ▶ easy to identify
- reasonably common in spiral and irregular galaxies
 - ► not in elliptical galaxies, because massive stars
- period-luminosity relation is very good (little spread)
- well understood theoretically

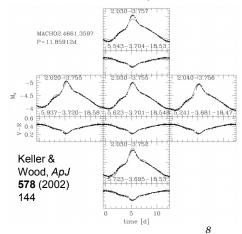

PHY306

PHY306

Classical Cepheids

• Disadvantages as calibrator:

- ► young massive stars, therefore likely to be found in dusty regions
- use infra-red wavelengthscalibration may be sensitive
 - to metallicity
 - model theoretically
 - use period-luminositycolour relationships
- only a few close enough for good parallaxes
 - use other geometric distance indicators

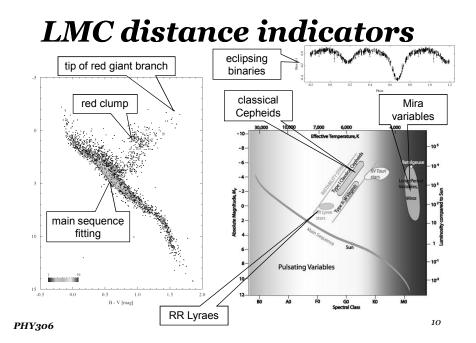

Cepheid Pulsation Mechanism

- Cepheids contain a layer of ionised helium (He II)
 - ▶ if star is accidentally compressed, this layer is further ionised, trapping energy
 - ▶ this pushes layer outward: star expands and surface cools
 - reduced density reduces opacity: pressure is reduced, ionisation layer falls inward again
 - ▶ collapse overshoots equilibrium and cycle repeats
- efficiency of this mechanism strongly dependent on depth of He II ionisation layer
 - hence existence of instability strip

PHY306

Modelling the Pulsation

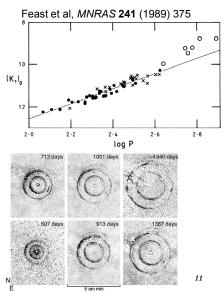
- Pulsation is resonant (like wind instrument)
 - can be fundamental or first harmonic
 - bump" Cepheids have both modes
 - model lightcurve to get mass, luminosity, effective temperature etc.
 - excellent fits obtained
 - ► compare calculated luminosity with apparent magnitude → distance


7

The Large Magellanic Cloud

• The Large Magellanic Cloud is a satellite galaxy of the Milky Way

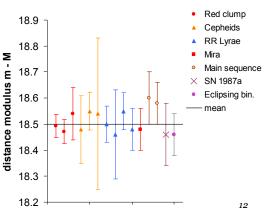
- ► type SBm
 - more small barred spiral than irregular, but disrupted by tidal forces
- ▶ distance ~50 kpc
- standard first step on extragalactic distance scale



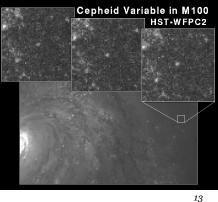
LMC distance indicators

- Standard candles
 - RR Lyrae stars and red clump stars
 - both helium core fusion
 - tip of red giant branch
 helium flash
- Period-luminosity relation
 - ► classical Cepheids
 - Mira variables
- Stellar modelling
 - eclipsing binaries
- Geometry
 - ► SN 1987A light echo

PHY306


David Malin, AAT

Distance of the LMC


- Recent measurements of LMC distance show excellent consistency
 - weighted mean distance modulus 18.50±0.02 mag
 - ► 50.1±0.5 kpc
 - Cepheid distances consistent with mean

Alves, New AR 48 (2004) 659, compilation of measurements pHY306 since 2002

Calibration summary

- Classical Cepheids are bright enough to be seen at distances of 10-20 Mpc by HST or 10-m class telescopes
- Theoretical calibration agrees with parallax estimates
- Distance of main testbed (LMC) seems well established

