Cosmological models

- Cosmological distances
- Single component universes
 - ► radiation only
 - ▶ matter only
 - ► curvature only
 - ► A only
- Multi component universes

PHY306

Cosmological distances

1

2

- Proper distance between origin and object:
 - ► $ds^2 = -c^2 dt^2 + a^2(t)[dr^2 + x(r)^2 d\Omega^2]$ (R-W metric)
 - $d_{\rm P}(t) = a(t) \int dr = a(t) r (d_{\rm P} \text{ is not a comoving distance})$
 - ▶ but we know $r = c \int_{t_e}^{t_o} \frac{dt}{a(t)}$ for light emitted at t_e and observed at t_o
 - therefore the proper distance to an object at time t_0 is

$$d_{\rm P}(t_0) = c \int_{t_0}^{t_0} \frac{\mathrm{d}t}{a(t)}$$

► if t_e = 0 we call this the horizon distance – it's the furthest we can currently see

Cosmological models

$$\dot{a}(t)^{2} = \frac{8\pi G}{3c^{2}} \left(\frac{\varepsilon_{r0}}{a(t)^{2}} + \frac{\varepsilon_{m0}}{a(t)} \right) - \frac{kc^{2}}{R_{0}^{2}} + \frac{\Lambda}{3}a(t)^{2}$$

- Different components of energy density just add:
 - ▶ note different *a* dependence
 - ▶ at small *a*, radiation must dominate
 - matter takes over when $a > \varepsilon_{r0}/\varepsilon_{m0}$
 - ▶ at large *a*, cosmological constant dominates if it exists

3

4

• Therefore sensible to consider single components

PHY306

Radiation only $a da = \sqrt{8\pi G \varepsilon_{r0}} dt$

$$a \, \mathrm{d}a = \sqrt{\frac{8\pi G \varepsilon_{\mathrm{r0}}}{3c^2}} \, \mathrm{d}t$$

- $a = (t/t_0)^{1/2}$ and $\varepsilon_r \propto t^{-2}$
- age of universe: $\ln a = \frac{1}{2}(\ln t \ln t_0) \rightarrow H = \frac{1}{2t}$ • so $t_0 = \frac{1}{2H_0}$
- proper distance:

$$d_{\rm P}(t_0) = ct_0^{1/2} \int_{t_e}^{t_0} \frac{dt}{\sqrt{t}} = 2ct_0 \left(1 - \sqrt{\frac{t_e}{t_o}}\right) = \frac{c}{H_0} \left(\frac{z}{1+z}\right)$$
$$d_{\rm P}(t_e) = d_{\rm P}(t_0) / (1+z)$$

Matter only

$$\sqrt{a} \, \mathrm{d}a = \sqrt{\frac{8\pi G\varepsilon_{\mathrm{m0}}}{3c^2}} \, \mathrm{d}t$$

- $a = (t/t_0)^{2/3}$ and $\varepsilon_m \propto t^{-2}$
- age of universe: $\ln a = \frac{2}{3}(\ln t \ln t_0) \rightarrow H = \frac{2}{3}t$ • so $t_0 = \frac{2}{3}H_0$
- proper distance:

$$d_{\rm P}(t_0) = ct_0^{2/3} \int_{t_{\rm e}}^{t_0} \frac{\mathrm{d}t}{t^{2/3}} = 3ct_0 \left(1 - \left(\frac{t_{\rm e}}{t_0}\right)^{1/3} \right) = \frac{2c}{H_0} \left(1 - \frac{1}{\sqrt{1+z}} \right)$$
$$d_{\rm P}(t_{\rm e}) = d_{\rm P}(t_0) / (1+z)$$

5

6

PHY306

Curvature only

$$\mathrm{d}a = \sqrt{-\frac{kc^2}{R_0^2}}\,\mathrm{d}t$$

- if k = 0, a = constant: flat, static, empty universe
- if k = -1, $a \propto t$: universe expands at constant speed
 - ► Milne model
 - ► age = $1/H_0$
 - ▶ proper distance $d_P(t_0) = ct_0 \ln(1+z)$
- k = +1 does not produce a physically viable model

Λ only

$$\frac{\mathrm{d}a}{a} = \sqrt{\frac{\Lambda}{3}} \,\mathrm{d}t = H_0 \,\mathrm{d}t$$

- $a = \exp[H_0(t t_0)]$: universe expands exponentially
 - ► de Sitter model
 - ▶ infinitely old: $a \rightarrow 0$ only as $t \rightarrow -\infty$
 - ▶ proper distance $d_P(t_0) = cz/H_0$
- this is a "Steady State" universe which always looks the same

7

Multi-component universes

$$\dot{a}(t)^{2} = H_{0}^{2} \left(\frac{\Omega_{r0}}{a(t)^{2}} + \frac{\Omega_{m0}}{a(t)} + \left(1 - \Omega_{r0} - \Omega_{m0} - \Omega_{\Lambda 0} \right) + \Omega_{\Lambda 0} a(t)^{2} \right)$$

• "This is not a user-friendly integral" (Ryden)

- fortunately at different times different components will dominate
 - ▶ best current values: Ω_{m0} = 0.27, $\Omega_{\Lambda 0}$ = 0.73, Ω_{r0} = 8.4×10⁻⁵
 - ► matter-radiation equality at $a = \Omega_{r0}/\Omega_{m0} = 0.0003$
 - matter- Λ equality at $a = (\Omega_{m0}/\Omega_{\Lambda 0})^{1/3} = 0.72$
- at any given time can usually use single-component model

PHY306

PHY306

9

PHY306

State of Play: theory

- Friedmann model plus cosmological constant can describe wide variety of behaviour
 - ▶ expanding, recollapsing or static
 - ► also "bouncing" and "loitering" models
 - ▶ this technology all available in 1920s
- However, models have free parameters
 - $\blacktriangleright H_0, \Omega_{\rm m0}, \Omega_{\rm r0}, \Omega_{\Lambda 0}$
 - need to determine these to see what model predicts for our universe