Relativistic models

- General relativity allows one to calculate the behaviour of space-time in the presence of mass-energy →PHY314
- To see basic behaviour
 - ▶ use Newtonian approximation where possible

1

2

▶ assume some GR results

PHY306

The Friedmann equation

• Sphere of mass *M*, radius *R_s*, expanding or contracting

$$\ddot{R}_{S} = -\frac{GM}{R_{S}^{2}}$$

$$\frac{1}{2}\dot{R}_{S}^{2} = \frac{GM}{R_{S}} + U = \frac{4\pi G\rho}{3}R_{S}^{2} + U$$

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) + \frac{2U}{r_{S}^{2}a(t)^{2}}$$
where $R_{S} = a(t) r_{S}$ and r_{S} is the radius of the sphere now

PHY306

The Friedmann equation

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) + \frac{2U}{r_{S}^{2}a(t)^{2}}$$

- If U > 0
 - ► RHS always positive
 - universe expands forever
- If U = 0
 - ▶ RHS \rightarrow 0 as $t \rightarrow \infty$
 - universe expands at ever-decreasing rate

PHY306

• If
$$U < 0$$

- ► $\rho(t) \propto (r_S a)^{-3}$
- ► U-term $\propto (r_S a)^{-2}$
- ► at $a = -4\pi G \rho_0 / 3 U r_s$ expansion reverses
- universe headed for a Big Crunch

3

The Friedmann equation

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8}{3}\pi G \frac{\varepsilon(t)}{c^2} - \frac{kc^2}{R_0^2 a(t)^2} \quad \text{relativistic}$$

- Replace mass density by energy density
 - $\triangleright \varepsilon = \rho c^2$
 - contributions from photons etc. as well as matter
- Replace *U* by curvature
 - ► k = +1 corresponds to U < 0 (Big Crunch)</p>
 - *R*₀ corresponds to present radius of curvature

PHY306

4

$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = H(t)^2 = \frac{8}{3}\pi G \frac{\varepsilon(t)}{c^2} - \frac{kc^2}{R_0^2 a(t)^2}$ • Energy density for k=0 • $\varepsilon_c = 3c^2 H^2 / 8\pi G$ • define $\Omega \equiv \varepsilon(t) / \varepsilon_c(t)$ • then $H(t)^2 (1-\Omega) = -\frac{kc^2}{R_0^2 a(t)^2}$ • $M = 1 \leftrightarrow k = 0$ • $\Omega < 1 \leftrightarrow k < 0$ • $\Omega > 1 \leftrightarrow k > 0$

 $\boldsymbol{\Omega}$

PHY306

Λ

5

6

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = H(t)^{2} = \frac{8}{3}\pi G \frac{\varepsilon(t)}{c^{2}} - \frac{kc^{2}}{R_{0}^{2}a(t)^{2}} + \frac{\Lambda}{3}$$

• Friedmann equation (like Newton) not static

- ▶ Einstein believed Universe is static (pre-Hubble)
- \blacktriangleright introduced cosmological constant Λ to allow this
 - basically an integration constant in Einstein's equations
 - ► can also be expressed as $\Omega_{\Lambda} = \Lambda/3H^2$; then usually call density parameter $\Omega_{\rm m}$ to distinguish the two

$$H(t)^{2} \left(1 - \Omega_{\rm m} - \Omega_{\Lambda}\right) = -\frac{kc^{2}}{R_{0}^{2}a(t)^{2}}$$

PHY306

The fluid equation

- Friedmann equation has two unknowns: ε (or ρ) and a
 heat supplied change in internal energy
 - ▶ need another equation
 - try thermodynamics: dQ = dE + P dV work done
 - ► energy in volume V is $E = \varepsilon V$; $dE = V d\varepsilon + \varepsilon dV$
 - $V \propto a^3$ so dV/V = 3da/a
 - ► dQ = 0 for expansion of universe

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$
 the fluid equation

7

8

PHY306

The acceleration equation

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8}{3}\pi G \frac{\varepsilon(t)}{c^2} - \frac{kc^2}{R_0^2 a(t)^2}$$

• Multiply by *a*² and differentiate:

$$2\ddot{a}\dot{a} = \frac{8\pi G}{3c^2} \left(2a\dot{a}\varepsilon + \dot{\varepsilon}a^2 \right) = \frac{8\pi G\dot{a}}{3c^2} \left(2a\varepsilon - 3(\varepsilon + P)a \right)$$

• Simplify:

 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} (\varepsilon + 3P)$ Always deceleration unless pressure is negative!

PHY306

The equation of state

• Unfortunately we have now introduced a third variable, the pressure *P*!

- need to relate *P* and ε (or ρ)
 - ▶ this relation depends on the substance under consideration
 - ▶ it is called the equation of state of the substance
- ▶ some useful equations of state:
 - ► non-relativistic gas: $P = nk_{\rm B}T = \rho k_{\rm B}T / \mu$ where μ is particle mass - since $3k_{\rm B}T = \mu \langle v^2 \rangle$, we have $P/\epsilon = \langle v^2 \rangle / 3c^2 << 1$, i.e. $P_{\rm m} \approx 0$
 - ► radiation (ultra-relativistic): $P/\varepsilon = \frac{1}{3}$ so $P_r = \frac{1}{3} \varepsilon_r$
 - ► A: as its energy density is constant with time, $P_{\Lambda} = -\varepsilon_{\Lambda}$ - this gives acceleration, since $\varepsilon + 3P < 0$

PHY306

The fluid equation revisited

$$\dot{\varepsilon} + 3\frac{a}{a}(\varepsilon + P) = 0$$

• Radiation

$$P_{\mathbf{r}} = \frac{1}{3} \varepsilon_{\mathbf{r}} \rightarrow \frac{\dot{\varepsilon}}{\varepsilon} = -4 \frac{\dot{a}}{a}$$
$$\epsilon_{\mathbf{r}} \propto a^{-4}$$

• Nonrelativistic matter

$$P_{\rm m} \approx \mathbf{0} \rightarrow \frac{\dot{\varepsilon}}{\varepsilon} = -3\frac{\dot{a}}{a}$$
$$\varepsilon_{\rm m} \propto a^{-3}$$

- •Λ
 - $\blacktriangleright P_{\Lambda} = -\varepsilon_{\Lambda} \rightarrow \dot{\varepsilon} = 0$
 - ► ε_{Λ} = constant
- More general form • $P = w\varepsilon \rightarrow \frac{\dot{\varepsilon}}{\varepsilon} = -3(1+w)\frac{\dot{a}}{a}$ • $\varepsilon \propto a^{-3(w+1)}$

PHY306

9

Cosmological models

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8}{3}\pi G \frac{\mathcal{E}(t)}{c^2} - \frac{kc^2}{R_0^2 a(t)^2}$$

- Can now substitute in

 $\varepsilon = \varepsilon_0 a^{-3} \text{ (matter)},$ $\varepsilon = \varepsilon_0 a^{-4} \text{ (radiation), or}$ $\varepsilon = \varepsilon_0 (\Lambda)$ in real life a combination of all three!

to get a differential equation for a(t)

• First try this with single components...

PHY306

11