
Relativity

- Principle of relativity
 - ▶ not a new idea!
- Basic concepts of special relativity
 - ▶ ...an idea whose time had come...
- Basic concepts of general relativity
 a genuinely new idea
- Implications for cosmology

PHY306

Relativity

- "If the Earth moves, why don't we get left behind?"
- Relativity of motion (Galileo)

1

2

- ▶ velocities are measured relative to given frame
- ▶ moving observer only sees velocity *difference*
- ▶ no absolute state of rest (cf. Newton's first law)

► uniformly moving observer *equivalent* to static *PHY306*

Relativity

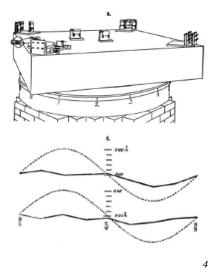
• Principle of relativity

- physical laws hold for all observers in inertial frames
 - inertial frame = one in rest or uniform motion
- ► consider observer B moving at v_x relative to A

► $\mathbf{x}_{\mathsf{B}} = \mathbf{x}_{\mathsf{A}} - \mathbf{v}_{\mathsf{x}} \mathbf{t}$

- ► $y_B = y_A$; $z_B = z_A$; $t_B = t_A$
- \blacktriangleright V_B = dx_B/dt_B = V_A v_x
- ► $a_B = dV_B/dt_B = a_A$

- Using this
 - Newton's laws of motion
 OK, same acceleration
 - Newton's law of gravity
 OK, same acceleration
 - Maxwell's equations of electromagnetism
 - ► $c = 1/\sqrt{\mu_0 \varepsilon_0}$ not frame dependent
 - but c = speed of light frame dependent


3

problem!

PHY306

Michelson-Morley experiment

- interferometer measures phase shift between two arms
 - if motion of Earth affects value of c, expect time-dependent shift
 - no significant shift found

Basics of special relativity

- Assume speed of light constant in all inertial frames
 - "Einstein clock" in which light reflects from parallel mirrors
 - time between clicks $t_A = 2d/c$
 - ► time between clicks $t_{\rm B} = 2d_{\rm B}/c$ ► but $d_{\rm B} = \sqrt{(d^2 + \frac{1}{4}v^2t_{\rm B}^2)}$
 - ► so $t_A^2 = t_B^2(1 \beta^2)$ where $\beta = v/c$
 - moving clock seen to tick more slowly, by factor $\gamma = (1 \beta^2)^{-1/2}$
 - note: if we sit on clock B, we see clock A tick more slowly

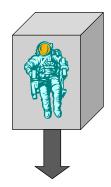
stationary clock A d d moving clock B d B vt

PHY306

Basics of special relativity

- Lorentz transformation
 - $\blacktriangleright x_{\rm B} = \gamma(x_{\rm A} \beta ct_{\rm A}); y_{\rm B} = y_{\rm A}; z_{\rm B} = z_{\rm A}; ct_{\rm B} = \gamma(ct_{\rm A} \beta x_{\rm A})$
 - ▶ mixes up space and time coordinates → spacetime
 - ▶ time dilation: moving clocks tick more slowly
 - ► Lorentz contraction: moving object appears shorter
 - ▶ all inertial observers see same speed of light *c*
 - Spacetime interval ds² = c²dt² − dx² − dy² − dz² same for all inertial observers
 - ► same for energy and momentum: $E_{\rm B} = \gamma (E_{\rm A} \beta c p_{x\rm A});$
 - $cp_{xB} = \gamma(cp_{xA} \beta E_A); cp_{yB} = cp_{yA}; cp_{zB} = cp_{zA};$
 - ► interval here is invariant mass $m^2c^4 = E^2 c^2p^2$

PHY306


6

The light cone

• For any observer, spacetime is divided into:

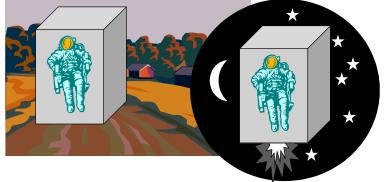
- ▶ the observer's past: $ds^2 > 0, t < 0$
 - ▶ these events can influence observer
- the observer's future: $ds^2 > 0$, t > 0
- observer can influence these events
 • the light cone: ds² = 0
 • path of light to/from
 - observer the light cone
- "elsewhere": $ds^2 < 0$
 - no causal contact
- PHY306

Basics of general relativity

astronaut in freefall

∎event elsewhere: ds²<0

7


space

• past event: ds²>0

astronaut in inertial frame

frame falling freely in a gravitational field "looks like" inertial frame

Basics of general relativity

astronaut under gravity astronaut in accelerating frame

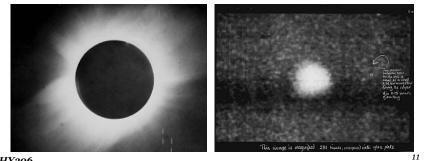
gravity looks like acceleration (gravity appears to be a "kinematic force")

PHY306

Basics of general relativity

- (Weak) Principle of Equivalence
 - ▶ gravitational acceleration same for all bodies
 - ► as with kinematic forces such as centrifugal force
 - ▶ gravitational mass ∝ inertial mass
 - ▶ experimentally verified to high accuracy
 - gravitational field locally indistinguishable from acceleration
 - ▶ light bends in gravitational field
 - but light takes shortest possible path between two points (Fermat)

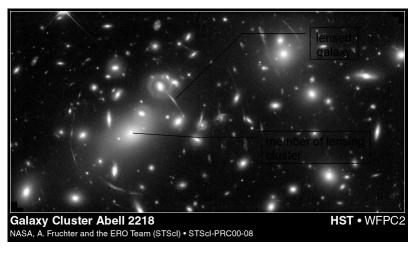
spacetime must be curved by gravity



10

9

Light bent by gravity


- First test of general relativity, 1919
 - Sir Arthur Eddington photographs stars near Sun during total eclipse, Sobral, Brazil
 - ▶ results appear to support Einstein (but large error bars!)

PHY306

photos from National Maritime Museum, Greenwich

Light bent by gravity

Conclusions

• If we assume

- ▶ physical laws same for all inertial observers
 - ▶ i.e. speed of light same for all inertial observers
- ▶ gravity behaves like a kinematic (or fictitious) force
 - ▶ i.e. gravitational mass = inertial mass
- then we conclude
 - absolute space and time replaced by observerdependent spacetime
 - ▶ light trajectories are bent in gravitational field
 - ▶ gravitational field creates a curved spacetime

PHY306

13