A brief history of cosmology

- Basic concepts
 - spatial extent
 - finite (with edges)
 - finite (unbounded)
 - infinite
 - our location
 - Earth at centre
 - Sun at centre
 - solar system near centre
 - solar system far from centre
 - no centre
 - past and future
 - both finite
 - creation, future destruction
 - both infinite
 - no beginning, no end
 - finite past, infinite future
 - dynamics
 - static
 - expanding
 - cyclic

Early ideas: astronomy

- Clearly understood concepts in Greek and Hellenistic astronomy
 - shape and size of the Earth (Eratosthenes, BC 276-197)
 - size and distance of the Moon (Aristarchos, BC 310-230)
 - Sun is much larger than Earth (Aristarchos)
 - exact value was wrong by a large factor: method sound in principle, impossible in practice!

- Ideas raised but not generally accepted
 - Earth rotates on its axis (Heraclides, BC 387-312)
 - Sun-centred solar system (Aristarchos)
Early ideas: cosmology

- Aristotle/Ptolemy
 - Earth-centred, finite, eternal, static
- Aristarchos/Copernicus
 - Sun-centred, finite, eternal, static

*At this time, little observational evidence for Sun-centred system!

Renaissance

- Birth of modern science
 - scientific method
 - Galileo
 - better observations
 - Tycho, Galileo
 - development of mathematical analysis
 - Kepler, Galileo, Newton

Newtonian cosmology
Newtonian Cosmology

• Newton’s *Philosophiae Naturalis Principia Mathematica*, 1687
 ▶ Newtonian gravity, \(F = \frac{GMm}{r^2} \), and second law, \(F = ma \)
 ▶ Approximate size of solar system (Cassini, 1672)
 ▶ from parallax of Mars
 ▶ Finite speed of light (Ole Rømer, 1676)
 ▶ from timing of Jupiter’s moons
 ▶ No distances to stars
 ▶ No galaxies

Newtonian Cosmology

• Newton assumed a static universe
 ▶ Problem: unstable unless completely homogeneous
 ▶ Consider mass \(m \) on edge of sphere of mass \(M \) and radius \(r \)
 ▶ mass outside sphere does not contribute (if spherically symmetric)
 ▶ mass inside behaves like central point mass
 ▶ if there exists an overdense region, everything will fall into it
Olbers’ Paradox

- Named for Wilhelm Olbers, but known to Kepler and Halley
 - Consider spherical shell of radius r and thickness dr
 - Number of stars in this shell is $4\pi r^2 n \, dr$, where n is number density of stars
 - Light from each star is $L/4\pi r^2$, therefore light from shell is $nL \, dr$, independent of r
 - therefore, in infinite universe, night sky should be infinitely bright (or at least as bright as typical stellar surface – stars themselves block light from behind them)
- Why is the sky dark at night?

Resolution(s)

- Light is absorbed by intervening dust
 - suggested by Olbers
 - doesn’t work: dust will heat up over time until it reaches the same temperature as the stars that illuminate it
 - (I’m not sure 17th century astronomers would have realised this)
- Universe has finite size
 - suggested by Kepler
 - this works (integral is truncated at finite r)
 - but now Newtonian universe will definitely collapse
- Universe has finite age
 - equivalent to finite size if speed of light finite
 - light from stars more than ct distant has not had time to reach us
 - (currently accepted explanation)
- Universe is expanding
 - effective temperature of distant starlight is redshifted down
 - this effect not known until 19th century
 - (does work, but does not dominate (for stars) in current models)

Olbers + Newton could have led to prediction of expanding/contracting universe
Further developments

- James Bradley, 1728: aberration
 - proves that the Earth orbits the Sun
 - also allowed Bradley to calculate the speed of light to an accuracy of better than 1%
- Friedrich Bessel, 1838: parallax
 - distances of nearby stars
 - a discovery whose time had come: 3 good measurements in the same year by 3 independent people, after 2000 years of searching!
- Michelson and Morley, 1887: no aether drift
 - the speed of light does not depend on the Earth’s motion

State of Play ~1900

- We know
 - speed of light
 - distance to nearby stars
 - the Earth is at least several million years old
- Our toolkit includes
 - Newtonian mechanics
 - Newtonian gravity
 - Maxwell’s electromagnetism
- We don’t know
 - galaxies exist
 - the universe is expanding
 - the Earth is several billion years old
- We are worried about
 - conflict between geology and physics regarding age of Earth
 - about to be resolved
 - lack of aether drift