

CALCULATIONS

- Numerical value: last step in solving a problem
- usually doesn't cost many exam marks if you get it wrong - provided method and logic correct
- but obviously crucial in real-world applications
- underestimating stresses on an aircraft wing by factor of 10 clearly not a good idea
- Usual rules apply
- Know what you're doing
- Simplify if possible
- Check answer
- "calculator typos" common cause of lost marks in exams

Expansions and Approximations

- Solutions to many problems rely on series expansions
- e.g. small angle approximations, $\sin \theta \approx \theta, \cos \theta \approx 1-1 / 2 \theta^{2}$
- Know the most useful ones
- $\sin \theta, \cos \theta,(1+x)^{n} \approx 1+n x$ (binomial expansion)
- they are on standard constants sheet if you forget
- but often needed in derivations, so better to know them
- Be aware of any limitations
- $\sin \theta, \cos \theta$ need θ in radians
- When to use in calculations
- when required by derivation/definition
- when they introduce simplifications
- when you might otherwise have problems with precision

Example 1: Definition

- The parallax of Sirius is 0.379 arc seconds. What is its distance in parsecs?
- The definition of the parsec is "the
 distance at which a star would have a parallax of one arc second" (and angles in arc seconds are always small)
- so $d(p c)=1 / p(\operatorname{arcsec})$ by definition, hence $d=2.64 p c$
- We could:
o convert 0.379" to degrees: 0.0001053°
- take the sine of that: 1.84×10^{-6}
- look up the distance to the Sun in metres: $1.50 \times 10^{11} \mathrm{~m}$
- write $\mathrm{d}=1.50 \times 10^{11} / 1.84 \times 10^{-6}=8.1 \times 10^{16} \mathrm{~m}$
- look up the conversion between parsecs and metres: $1 \mathrm{pc}=3.09 \times 10^{16} \mathrm{~m}$
- and convert d to pc: $\mathrm{d}=8.1 / 3.09=2.64 \mathrm{pc}$
- Same answer, six times more work!

EXAMPLE 2: SIMPLIFICATION

- If you are on a boat in mid-ocean, how far away is the horizon? Assume that when standing on the deck your eye level is 10 m above the water surface, and take the Earth to be a sphere of radius 6370 km .
- You want the short side of a right-angled triangle whose other two sides are 6370 km and ($6370 \mathrm{~km}+10 \mathrm{~m}$).
- You can do this by Pythagoras: $\left(6370.01^{2}-6370^{2}\right)^{1 / 2}=11.3 \mathrm{~km}$
- However if we write $(6370+0.01)^{2} \approx 6370^{2}+2 \times 0.01 \times 6370$, the 6370^{2} cancels and we get $\sqrt{127.4}=11.3 \mathrm{~km}$
- this is much easier to check than the previous result (you can do $2 \times 63.7=127.4$ in your head, and since $11^{2}=121,11.3$ must be about right)

Example 3: Precision

- The highest energy cosmic ray observed by the Auger experiment had a measured energy of 6.4 J . If the particle was a proton, mass $1.7 \times 10^{-27} \mathrm{~kg}$, calculate the difference between its velocity and the speed of light.
- Relativity gives $E=\mathrm{ymc}^{2}$ where $\mathrm{Y}=\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{-1 / 2}$
- so try this: $y=6.4 /\left(1.7 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2}\right)=4.3 \times 10^{10}$
- $1-v^{2} / c^{2}=1 / y^{2}=5.5 \times 10^{-22}$
- $\mathrm{v} / \mathrm{c}=\left(1-5.5 \times 10^{-22}\right)^{1 / 2}=1$ (exactly, on calculator), so $\mathrm{v} \equiv \mathrm{c}$
- oops, can't be right, proton is not massless
- Instead write $v=c(1-\varepsilon)$ where $\varepsilon \ll 1$
- $\mathrm{v}^{2}=\mathrm{c}^{2}(1-2 \varepsilon)$ using binomial expansion
- $Y=(2 \varepsilon)^{-1 / 2}$, so $\varepsilon=0.5 / \gamma^{2}=2.7 \times 10^{-22}$
$\circ \mathrm{C}-\mathrm{v}=\mathrm{c} \varepsilon=8.2 \times 10^{-14} \mathrm{~m} \mathrm{~s}^{-1}$ (!!)

Checks and Estimates

- Easy to get numerical values wrong
- mismatch units, e.g. $1.4 \mathrm{~mm} / 184 \mathrm{~m}$ gives $7.6 \times 10^{-3} \mathrm{rad}$ instead of 7.6×10^{-6} rad if you forget to convert mm to m
- think calculator's set to degrees when it's set to radians, or vice versa
- forget square or square root (or indeed any other power)
- transpose digits in calculator, e.g. 19 becomes 91
- forget exponent, or reverse its sign, e.g. 1.6×10^{-19} becomes 1.6×10^{19}
- Therefore should always check before moving on
- numerical mistakes are usually easy to fix once you realise you have a problem

Basic Checks

- Is the number obviously wrong?
- satellite orbiting at $6 \times$ speed of light, stars in binary system separated by 32 cm , mass of snooker ball $=15$ tonnes, etc.
- Check for forgotten powers
- Check for incorrect units
- Does the rest of the problem make sense with this number?
- if you found that the mass of an object was 300 kg , and the question continues, "A student picks up the object" your number is probably wrong!
- Is the number intrinsically plausible?
- it is useful to be aware of "typical" values for particular areas of physics or astrophysics - e.g. stars typically between 0.1 and $100 \times$ Sun's mass

Estimates

- If at all doubtful, make estimate using powers of 10
- Example: The Sun has a power output of $3.8 \times 10^{26} \mathrm{~W}$ and a radius of $7.0 \times 10^{8} \mathrm{~m}$. What is its surface temperature?
- We use $\mathrm{L}=4 \pi \mathrm{R}^{2} \sigma \mathrm{~T}^{4}$ where $\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
- So we have $T=\left(L / 4 \pi R^{2} \sigma\right)^{1 / 4}$
- Estimate: $4 \times 10^{26} /\left(4 \times 3 \times\left(7 \times 10^{8}\right)^{2} \times 6 \times 10^{-8}\right)$
- powers of 10: $26-2 \times 8+8=18$
- numbers: $4 /(4 \times 3 \times 50 \times 6)=1 / 900=10^{-3}$
- so $\mathrm{T}^{4} \sim 10^{15} \mathrm{~K}^{4}$
- $\mathrm{T}=\left(10^{16} / 10\right)^{1 / 4}=10000 /\left(10^{1 / 4}\right) \sim 5000 \mathrm{~K}$ (actually 5700 K)
- Why do this instead of just redoing calculation?
- it's quicker (with practice)
- you may be entering calculation into calculator wrongly
- if you focus on powers, you may find one you forgot!

CALCULATIONS: SUMMARY

- Before entering numbers:
- check dimensions of equation
- check behaviour of equation (special cases etc.)
- think about whether you should be using any expansions or approximations
- check units of numerical values

- After entering numbers:

- consider whether result is physically possible
- consider whether it is plausible
- if you made any approximations, check whether they were valid

```
        - e.g. if you assumed v <<c, but the result is v=2.8\times1\mp@subsup{0}{}{8}\mp@subsup{\textrm{m s}}{}{-1}\mathrm{ ,}
```

 you have a problem

Problem Solving: Summary

- Basic approach
- Model the system, and identify the underlying physics
- Formulate equations describing the system
- Solve the equations for the variable(s) you need
- Check that your solution makes sense before using it

- Principles

- Use symbols, not numbers, for as long as possible
- Always check dimensions
- Look for special cases, and check solution works there
- Check units before substituting numbers
- Check that numerical answers are - physically possible - plausible for given system

AND FINALLY...
PRACTISE!

