Dimensional Analysis: Principles

- "You can't add apples to oranges"
- "1 km + $42 \mathrm{~kg}=27 \mathrm{~s}$ " does not make sense
- if $Z=X+Y$, then Z, X, Y must all have same dimensions
- Note distinction between dimensions and units
- 1 m, 1 furlong, 1 pc all have dimensions of length, but different units
- for symbolic equations only need consistent dimensions
- for numerical calculations also need consistent units
- Example:
age of universe $\approx 1 / H_{0}$ where H_{0} is Hubble's constant - $H_{0}=71 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ has dimensions 1/time, as required - universe clearly is not $1 / 71$ s old! - need to convert to appropriate units using $1 \mathrm{Mpc}=3.2 \times 10^{19} \mathrm{~km}$

Basic Dimensions

- SI base units are metre, kilogram, second, ampere, kelvin, mole and candela
- seldom need the last two in dimensional analysis problems
- so the 5 main dimensions to consider are length [L]((1=%5Cbeta)), mass [M]((0=-%5Cbeta+%5Cgamma+%5Cdelta)), time [T]((0=-(%5Calpha+%5Cbeta))) current [I] (or charge [Q]) and temperature $[\Theta]$ - irritating that both time and temperature begin with "t"...
- use square brackets to distinguish between dimensions and units
- e.g. do not confuse [M]((0=-%5Cbeta+%5Cgamma+%5Cdelta)) (mass) with unit m (length)

UsES

- Check correctness of equations
- "I can't remember if the volume of a sphere is $4 \pi R^{2}$ or $4 / 3 \pi R^{3}$ " - R^{2} has dimensions (length) ${ }^{2}$, whereas volume has dimensions (length) ${ }^{3}$
- therefore the first expressions can't possibly be right - it must be the second one
- note that you can't identify numerical factors by dimensional analysis: $4 \pi R^{3}$ would also look "right"

- Work out functional forms

- gravitational potential energy of a sphere of mass M and radius R presumably depends on G, M and R
$\circ M$ has dimensions of mass, $[M]$, R of length, [L]((1=%5Cbeta)), G is measured in $\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$ so has dimensions $[\mathrm{L}]^{3}[\mathrm{~T}]^{-2}[\mathrm{M}]^{-1}$
- energy has dimensions $[M][L]^{2}[T]^{-2}$ (think of $1 / 2 \mathrm{mv}^{2}$)
- so gravitational potential energy must be $\propto \mathrm{GM}^{2} / \mathrm{R}$

EXAMPLE 1

- The wavelength produced by a wiggler (a component of a free electron laser) has a value that depends on the applied magnetic field, the speed of light and the mass and charge of the electron. Find the functional dependence of the wavelength on these four parameters.
- Construct equation: $\lambda \propto B^{\alpha} c^{\beta} m^{\gamma} e^{\delta}$
- we need to find the unknown powers $\alpha, \beta, \gamma, \delta$
- do this by recognising that the dimensions on both sides of the equation must be the same

EXAMPLE 1: ANSWER

- What are the dimensions of magnetic field B ?
- Use $\mathbf{F}=q \mathbf{v} \times \mathbf{B}:[\mathrm{F}]=[\mathrm{M}][\mathrm{L}][T]^{-2},[\mathrm{v}]=[\mathrm{L}][T]^{-1},[q]=[\mathrm{Q}]$
- therefore $[\mathrm{B}]=[\mathrm{M}][\mathrm{L}][\mathrm{T}]^{-2} /\left([\mathrm{Q}][\mathrm{L}][\mathrm{T}]^{-1}\right)=[\mathrm{M}][\mathrm{Q}]^{-1}[\mathrm{~T}]^{-1}$
$\circ \lambda \propto B^{\alpha} c^{\beta} m^{\gamma} e^{\delta} \rightarrow[L]=[M]^{\alpha}[Q]^{-\alpha}[T]^{-\alpha}[L]^{\beta}[T]^{-\beta}[M]^{\gamma}[Q]^{\delta}$
- Equate powers:
-

-[M]((0=-%5Cbeta+%5Cgamma+%5Cdelta)): $0=\alpha+Y$
-[Q]: $0=-\alpha+\delta$

-
- Solve set of simultaneous equations
- $\beta=1$, so $\alpha=-1, \delta=-1, \gamma=1$
- $\lambda \propto \mathrm{mc} / \mathrm{eB}$

Example 1: Sanity Checks

- Always check your answer!
- In dimensional-analysis problems obviously can't really check dimensions (circular logic)
- So check behaviour
- $\lambda \propto \mathrm{mc} / \mathrm{eB}$
- recall energy of photon $\propto 1 / \lambda$
- What do we logically expect?
\square • no magnetic field \rightarrow no emission (zero energy)
- no charge \rightarrow no force \rightarrow no emission
∇ - more massive particle \rightarrow harder to wiggle \rightarrow lower energy

Dimensional Analysis: Estimation

- Numerical constants in equations are not usually >10 or <0.1
- e.g. $\pi r^{2}, 1 / 2 m v^{2}$
- Therefore can often obtain an order of magnitude estimate by using dimensional analysis and either fundamental constants (e.g. c, h, G, e) or variables that are obviously relevant to the problem (e.g. mass, radius)
- This can be useful if trying to work out whether an effect is likely to be important or can safely be neglected
- e.g. "do I need to worry about air resistance here?"

EXAMPLE 2

- The radius of an atom is likely to depend on $\mathrm{e}, \varepsilon_{0}, \mathrm{~m}_{\mathrm{e}}$ and h . Estimate the size of atoms.
- Dimensions of ε_{0} :
consider Coulomb's law $F=Q_{1} Q_{2} /\left(4 \pi \varepsilon_{0} r^{2}\right)$
$\circ \varepsilon_{0}$ must have dimensions of $[Q]^{2}[L]^{-2}[M]^{-1}[L]^{-1}[T]^{2}=[Q]^{2}[L]^{-3}[M]^{-1}[T]^{2}$
- $R \propto e^{\alpha} \varepsilon_{0}^{\beta} m_{e}{ }^{\gamma} h^{\delta}$
$[\mathrm{L}]=[\mathrm{Q}]^{\alpha}[\mathrm{Q}]^{2 \beta}[\mathrm{~L}]^{-3 \beta}[\mathrm{M}]^{-\beta}[\mathrm{T}]^{2 \beta}[\mathrm{M}]^{\gamma}[\mathrm{M}]^{\delta}[\mathrm{L}]^{2 \delta}[\mathrm{~T}]^{-\delta}$
- Equate powers
- [L]((1=%5Cbeta)): $1=-3 \beta+2 \delta$
- [Q]: $0=\alpha+2 \beta$
-

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{array}{c}
\alpha=-2, \beta=1, \gamma=-1, \delta=2 \\
\quad R \propto h^{2} \varepsilon_{0} / m_{e} e^{2}
\end{array}
\end{aligned}
$$

- [T]((0=-(%5Calpha+%5Cbeta))): $0=2 \beta-\delta$
- Numerical value: $\mathrm{R} \sim 1.7 \times 10^{-10} \mathrm{~m}$ - the actual value is $0.53 \times 10^{-10} \mathrm{~m}$; we are only a factor of π out

Special Values

- Check that solution works for simple cases where answer is "obvious"
- "simple cases" are often extreme values
- variable goes to 0 or ∞
- sometimes they can be cases with symmetry - two lengths, masses, etc., are equal
- Also check that changing values has expected effect
- Example:
- Thermal conductivity, k , has units of $\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$. What is the equation for heat flow P through a barrier of area A and thickness x, if the difference in temperature is ΔT ?
- The three simplest possibilities with correct dimensions are (a) $P=k x \Delta T$, (b) $P=k \Delta T \sqrt{ } A$, (c) $P=(k A / x) \Delta T$
- If (a), heat flow increases as barrier gets thicker; if (b), heat flow doesn't depend on thickness at all - so it's got to be (c)

Example 3

- Which of these formulae gives the area of the ellipse?

- (a) $a b^{2} ;(\mathrm{b}) a^{2}+b^{2}$;
(c) a^{3} / b;
(d) $2 a b$ (e) $\pi a b$
- only (a) is dimensionally wrong
- Special cases:
- if $a=0$, area $=0$ (ellipse collapses to vertical line)
- therefore (b) must be wrong
- if $b=0$, area $=0$ (ellipse collapses to horizontal line)
- therefore (c) must be wrong
- if $a=b$, ellipse becomes a circle with area $\pi a^{2}\left(=\pi b^{2}\right)$
- therefore (d) must be wrong and the only possible answer is (e)

SCALING

- If you know functional dependence and the result for one particular case, you can use ratios to find results for other cases.
- Example:

It is known that the luminosity (power output) of a mainsequence star is related to its mass by $L \propto M^{3.8}$.
Estimate the lifetime of the star Sirius, which is twice the mass of the Sun, if the Sun's lifetime is 10^{10} years.

- We can reasonably assume that the energy available to the star is proportional to its mass, so $T \propto M / L$
\circ dimensional analysis gives $\mathrm{Mc}^{2} / \mathrm{L}$, i.e. $\mathrm{E} \propto \mathrm{Mc}^{2}$
- If $L \propto M^{3.8}$ this gives $T \propto M^{-2.8}$

$$
\circ \text { So } \mathrm{T}_{\text {sir }} / T_{\text {sun }}=\left(\mathrm{M}_{\text {sir }} / \mathrm{M}_{\text {sun }}\right)^{-2.8}=0.14 \text {, i.e. } \mathrm{T}_{\text {sir }}=1.4 \times 10^{9} \mathrm{yr}
$$

