

- From studying nearby stars and stellar clusters
 - most stars are on the main sequence
 - stars become red giants after leaving the main sequence
- How does this relate to the internal structure of the stars and their nuclear fusion reactions?

Susan Cartwright

Our Evolving Universe

Fusion reactions 1.009 Generate energy up to iron 1.008 But, need to get two positively hydrogen 1 1.007 charged nuclei close enough to 1.006 fuse together • need fast movement 1.00 E=mc² VINAL NE UR • high temperature 1.00 (and high density) 1.003 Converting hydrogen-1 to 1.00 helium 4 helium-4 is the easiest and most 1.00 efficient fusion reaction • 0.7% of initial mass converted 0.99 to energy iron 56 0.99

Susan Cartwright

Our Evolving Universe

2

- Main sequence stars fuse hydrogen to helium in core
- Red giants (and subgiants) fuse hydrogen to helium in shell outside helium core
- Stars have nearly constant luminosity on main sequence, but red giants get brighter as they age
- Red giant stage lasts only 10% as long as main sequence

Susan Cartwright

Our Evolving Universe

<section-header>
Helium fusion
Neither beryllium-8 nor boron-8 is stable
need to combine three helium nuclei to get stable carbon-12
beryllium-8 serves as intermediate stage
need high temperature and density (else ⁸Be decays before it gets converted to ¹²C)

Susan Cartwright

Our Evolving Universe

Helium fusion on the HR diagram

Susan Cartwright

Our Evolving Universe

Side effects of helium fusion

- Adding more helium nuclei to carbon can produce the alpha-process elements
 - oxygen-16, neon-20, etc.
- Adding helium to carbon-13 or neon-22 produces free neutrons
 - which can easily combine with nuclei (no charge) to produce different elements
- Why does helium fusion make mostly carbon?
 - because carbon nuclei have an energy level at exactly the right place
 - otherwise carbon would be a rare element
 - and we would not exist! *Fred Hoyle, 1953*

11

Susan Cartwright

Our Evolving Universe

Stellar evolution Stellar evolution (Z = 0.020) Note step is in log (age): log t = 6.0 each frame is 60% older 6 than the one before 5 • massive stars evolve very 4 quickly • post-main-sequence life of • log L/Lsun з star is always comparatively ٠ 2 short • massive stars change colour 1 a great deal, but don't change brightness much 0 less massive stars become • -1 much brighter as red giants 4.5 3.5 5 log T (K) Susan Cartwright **Our Evolving Universe** 12

After helium fusion

- Fusion of heavier elements gets more difficult
 - higher mass means lower speed at given temperature
 - higher charge means more electrostatic repulsion
- Stars like the Sun never get beyond helium fusion
- More massive stars (>8 M_S) can fuse elements up to iron
- What happens to Sun-like stars when the helium is used up?
- What happens to massive stars when they reach iron?
 - fusion beyond iron requires energy
- How are the heavy elements formed in stellar cores dispersed into space?

...next lecture!

Susan Cartwright

Our Evolving Universe

13