

A planet-building universe

- Massive stars produce heavy elements
- and disseminate them into interstellar medium via planetary nebulae and supernovae
- Heavy elements in cool gas tend to clump together to form small dust grains
- reason for opacity of gas clouds in Milky Way
- Theory and observation (cratering record) suggest planets of solar system formed by accretion
- dust grains collide and stick to form successively larger bodies
- probably fairly easy process if stars form from dust-rich material

Detection of extrasolar planets

First, find your planet...

- Can we observe planets directly?
- hardly ever with current technology (but...)
- planets too faint compared with their star
- this brown dwarf is just visible - and its star is a red dwarf
- this suspected planet is orbiting a brown dwarf
- planets shine by reflected light
- the brighter the planet, the closer it must be to its star

Hubble Space Telescope
Wide Field Planetary Camera 2
November 17, 1995

Finding invisible planets

- Gravitational force is mutual: planet pulls on star as much as star on planet
- star must move around system centre of mass
- it changes position on the sky
- it moves along line of sight
- problem: star is much more massive than planet
- so won't move much, or very quickly
- Example: Sun and Jupiter
- Sun weighs $1000 \times$ Jupiter
- Radius of Jupiter's orbit around centre of mass: 5.2 AU
- Radius of Sun's orbit: 0.0052 AU
- Radius of Sun: 0.0047 AU
\rightarrow From nearest star, Sun's motion like 1p piece seen from 600 km away!
- Orbital velocity of Jupiter: 13 km/s
- Orbital velocity of Sun: $13 \mathrm{~m} / \mathrm{s}$
\rightarrow wavelength shift of 1 in 20 million!

Method 1: astrometry

- Look for star moving across sky
- used to detect presence of Sirius B (white dwarf)
- need nearby star
- to detect motion
- need massive planet far from star
- maximise size of star's orbit
- long period: need long series of observations

- Only one or two detections

Method 2: Doppler shift

- Look for periodic shift in star's spectrum
- does not depend on distance of star
- need massive planet near star
- the closer the planet, the faster the orbital speed (of both planet and star)
- need very good spectrum
- measure Doppler shifts of <1 in 1000000
- Most confirmed detections use this method

- and it is used to confirm transit candidates

Problems

Method 3: transit

- Observe small drop in light from star as planet passes across it
- amount of drop indicates size (not mass) of planet
- interval between transits gives period
- needs confirmation by radial velocity measurements
- otherwise could be grazing eclipse by stellar companion
- Increasingly important technique

Some data....

Known extrasolar planets

- Massive (2 Earth - 30 Jupiter) and close to star (many <1 AU)
- this is a selection effect (caused by detection method)
- but does show that such planets exist!
- most masses are minimum values
- but 424 planets transit
- 25 found by gravitational lensing
- 44 directly imaged
- some presumably brown dwarfs ($>13 M_{J}$)
- but surely not all (random orientation)

Susan Cartwright
Our Evolving Universe
11

Known extrasolar planets

Orbits

- Solar system planets in near-circular orbits
- Binary stars (and brown dwarfs?) often in eccentric orbits
- Many of these objects are in eccentric orbits
- but no clear correlation with mass
- no evidence for two distinct types of body

Parent stars

- High in heavy elements (usually >Sun)
- reasonable: planets form from dust
- Roughly solar type
(F7-K2)
- probably some selection bias: there are a few low mass stars
- ultra-accurate spectroscopy difficult in cool stars because of complex spectra

What are these planets?

How are they formed?

- Our theory for solar system:
- stellar wind from young Sun blows volatiles outwards
- "snowstorm" at 5 AU where water-ice solidifies
- fast accretion of large icy planet ($\sim 10 \mathrm{M}_{\text {Earth }}$) which then collects H / He atmosphere
- gas giants Jupiter, Saturn just outside "snow line"
- small rocky planets inside
- slowly accreting icy planets in outer system (Uranus, Neptune)
- Extrasolar "hot Jupiters":
- do they form in situ?
- looks impossible: too hot for ices, too little material for rock
- do they form outside snow line and migrate?
- planet forms in gas/dust disc around star
- drag from remaining gas/dust causes it to spiral inwards
- why does it stop?
- why didn't Jupiter do this?
- current theory-it did, but moved back out owing to interaction with Saturn
- see PHY106

Formation of "hot Jupiters"

What have we learned?

- Using Doppler shift measurements we have detected planets round ~800 nearby stars
- relatively massive planets close to stars, often in eccentric orbits
- not what was expected
- may arise when Jupiter-like planets migrate inwards after formation
- mainly single planets
- 174 multi-planet systems containing up to 7 detected planets
- solar system has only 1-2 detectable giant planets
- What does this imply?
- does not imply that such systems are typical
- detection method is biased
- does imply that they are possible!
- does not imply that systems like ours are uncommon
- Jupiter is barely detectable
- but does not provide evidence that they are common!
- No evidence yet for "other Earths"
...speculation next lecture!

