production dissemination				
	The top	o ten eleme	ents: /	
Н	100.000	big bang	big bang	
He	9.700	big bang	big bang	1 the Second
0	0.085	He fusion	supernovae	The second second
С	0.036	He fusion	planetary nebulae	
Ne	0.012	C fusion	supernovae	Note that the most common
Ν	0.011	H fusion	planetary nebulae	elements in your body all occur ir the top ten, formed by a variety
Mg	0.004	Ne, C fusion	supernovae	of mechanisms (most obvious absentees are calcium and phosphorus)
Si	0.004	O fusion	supernovae	
Fe	0.003	supernovae	supernovae	
S	0.001	O fusion	supernovae	

Our Evolving Universe

A planet-building universe

- Massive stars produce heavy elements
 - and disseminate them into interstellar medium via planetary nebulae and supernovae
- Heavy elements in cool gas tend to clump together to form small dust grains
 - reason for opacity of gas clouds in Milky Way
- Theory and observation (cratering record) suggest planets of solar system formed by accretion
 - dust grains collide and stick to form successively larger bodies
 - probably fairly easy process if stars form from dust-rich material

Susan Cartwright

Our Evolving Universe

Susan Cartwright

Our Evolving Universe

Susan Cartwright

Our Evolving Universe

Finding invisible planets

Susan Cartwright

Our Evolving Universe

Method 1: astrometry Look for star moving across sky • used to detect presence of Sirius B (white dwarf) • need nearby star to detect motion need massive planet far from star maximise size of star's orbit ◆ long period: need long series of observations M1/M2 = 3.6; e = 0.4Only one or two detections

Susan Cartwright

Our Evolving Universe

6

Method 2: Doppler shift

- ♦ the closer the planet, the faster the orbital speed (of both planet and star)
- need very good spectrum
 measure Doppler shifts of <1 in 1000000
- Most confirmed detections
- use this method
- and it is used to confirm transit candidates

Susan Cartwright

Our Evolving Universe

Observed Spectrum

Problems.... Doppler shift only detects velocity along line of sight • can't distinguish massive planet (or brown dwarf!) in tilted orbit from less massive planet in edge-on orbit • usually nothing to be done about this might see planet move across face of star (transit) can try astrometry 8

Susan Cartwright

Our Evolving Universe

Method 3: transit

- needs confirmation by radial velocity measurements
 - otherwise could be grazing eclipse by stellar companion
- Increasingly important technique

Susan Cartwright

Our Evolving Universe

Some data...

Susan Cartwright

Our Evolving Universe

10

What are these planets?

- Solar system has small rocky planets close to star, large gas giants further away
 - no experience of large planets close to star
 - generally assume these are gas giants, but direct evidence only for transiting planets

Susan Cartwright

Our Evolving Universe

15

Susan Cartwright

Our Evolving Universe

<section-header><complex-block><complex-block><complex-block>

Susan Cartwright

Our Evolving Universe