The Milky Way

- What is it?
 telescopes resolve it into many
- faint (i.e. distant) stars

 What does it tell us?
- that we live in a spiral galaxy
- How does it relate to the Solar System?

Susan Cartwright

Our Evolving Universe

1

Where are we?

- The Milky Way band cuts the sky in half
 the Sun is very near the
 - the Sun is very near the mid-plane of the disc The system of alabular
 - The system of globular clusters centres about 25000 l.y. from the Sun • distances determined
 - from HR diagramthis is the centre of the
 - Milky Way • we are a long way from the centre (but nowhere near the edge)

3

Susan Cartwright

Our Evolving Universe

The disc and the halo Open clusters are found close to the Milky Way on the sky they belong to the disc Globular clusters aren't they form a spherical "halo" around the disc ٠ Hydrogen gas is very concentrated in the midplane of the disc new star formation confined to disc The disc contains younger → stars than the halo

Susan Cartwright

Our Evolving Universe

The dynamic Milky Way

- The Sun orbits the Galactic centre at about 200 km/s
- Other disc stars near the Sun are moving at only ~20 km/s relative to the Sun
- → The whole disc must be rotating
 - although stars further out take longer to complete each circuit
- Globular clusters move fast relative to the Sun
 - → they orbit in random directions

Susan Cartwright

Our Evolving Universe

Mapping the Milky Way

- We can use the rotation of the disc to map the Milky Way in hydrogen gas
 - neutral hydrogen emits a radio spectral line at 21 cm
 - orbital motion produces Doppler shift
 - use geometry to work out location of cloud
- → The Milky Way appears to be a rather untidy spiral
 - similar results from mapping the ionised hydrogen associated with hot (massive, young) stars

6

Susan Cartwright

Our Evolving Universe

Stellar populations

Susan Cartwright

Our Evolving Universe

<text><list-item><list-item><list-item><list-item><list-item>

Susan Cartwright

Our Evolving Universe

8

Our Galaxy and others

- By looking in the infra-red we can see through the dust
 - the Milky Way looks remarkably like NGC891
 - By looking in radio we have mapped out spiral arms
 - the Milky Way resembles galaxies such as M61
- → The Milky Way is a typical large spiral galaxy
 - (like the Sun, larger than most, but not a champion!)

Susan Cartwright

Our Evolving Universe

What you see isn't all you get: the dark side of the Milky Way We can use Newton's laws to analyse the Milky Way's rotation

- it's too fast!
 - the gravitational force is more than we can account for by the masses of stars
- we need to assume that most of the Milky Way's mass is *dark matter* as yet we do not know
 - exactly what this issee seminar later

bulge

dark matter

nce (kpc)

disc

What do we know about the Milky Way?

- It is disc shaped
 - from its appearance in the night sky
- It has a bulge of older stars, and is surrounded by a halo of globular clusters and other very old stars
 - bulge from infra-red observations, globular clusters from visual
- We are about 25000 l.y. from the centre
 - from studying globular clusters

- The disc rotates
 from Doppler shift studies
 - of velocities of nearby stars and gas clouds
- Gas is confined to the disc
 from radio studies
 - therefore only old stars in bulge and halo
- There are spiral arms
 - from maps of neutral hydrogen and young stars
- Most of the mass is dark
 - from analysis of rotation curve

Susan Cartwright

Our Evolving Universe

11

<section-header>And finally... And finally... by the calculation cannot be added and the second the bulk of the second the bulk. a. It is a site of new star formation and recent supernovae b. It is a strong radio source and an X-ray source b. It is a strong radio source and the X-ray source b. It is a st

Susan Cartwright

```
Our Evolving Universe
```

12

Susan Cartwright

Our Evolving Universe