## Planets and life

- Successful detections of extrasolar giant planets suggests that planetary systems may be fairly common
- could we detect Earthlike planets?
- is it likely that such planets would have life?
- how would we know?



## Detection of Earth-like planets

- Doppler shift technique will not work
- Two possible strategies
- transit detection
- WASP ground-based (now)
- CoRoT space-based (now)
- Kepler (NASA) within 5 years?
- direct imaging
- requires space-based interferometer - multiple telescopes acting as one
- Darwin, TPF
- >10 years
- One system of Earth-mass planets has been found
- around a pulsar!
- not well understood, but clearly not really "Earth-like"



## Life on Earth: the fossil record

- Oldest rocks ~3.8 Gyr old
- Oldest fossils ~3.5 Gyr
- bacteria
- Oldest eukaryotes (nucleated cells) ~2 Gyr
- coincide with rise of atmospheric oxygen
- Oldest multicellular organisms ~550 Myr
- Early hominids ~5 Myr



## Life on Earth: implications

- Life appears very quickly
- "easy" process?
- but $>80 \%$ of history of life consists of single-celled organisms
- becoming multicellularis "hard"?
- on the other hand, it evolved several times...

```
Main elements used by life are very abundant
- "Organic" (carbon-based) compounds form easily in "early-Earth" condifions
Route from there to
DNA+protein organisms not well understood
\(\rightarrow\) "RNA world" first?
Liquid water looks essential
```

- and intelligence appears only in last 0.001\% of life's timeline
- intelligence is "hard"?

Arguing from a single example is intrinsically unsafe - and there is clear selection bias (we exist!)

## Life elsewhere: the solar system



- Venus looks superficially very similar to Earth
- but runaway greenhouse effect leads to surface temperature of $745 \mathrm{~K}\left(472^{\circ} \mathrm{C}\right)$
- Mars is too small to keep its atmosphere
- evidence for running water early in its history
- life might have evolved, but not complex life
- finding bacterial fossils would be major step: confirm that originating life is "easy"
- Europa is heated by tidal forces
- icy crust probably overlies liquid water ocean


## Life elsewhere: other stars

- Criteria for candidate stars:
- long enough lifetime
- life unlikely to evolve in 10-millionyear lifetime of 10-solar-mass star
- star of $1.7 \mathrm{M}_{\text {sun }}$ has 2 Gyr main sequence lifetime
- classes FGKM are OK
- high heavy element content
- evidence suggests this is required for planet formation
- not stars in halo
- stable star, stable orbits
- not close binary?
- not very low mass stars (often unstable flare stars)?
- Many stars satisfy these criteria



## Habitable zones

- Liquid water probably essential for life
- candidate planets must be in appropriate temperature range
- temperature basically determined by distance from star
- habitable zone
- should allow for stellar evolution
- continuously habitable zone
- also affected by size of planet
- problem for low mass stars: tidal locking
- planets face star
- extremes of temperature



## Planets in habitable zones



## Signs of life

- Oxygen is highly reactive
- not stable in atmosphere: maintained by plants
- earliest fossils already photosynthesising
- oxygen in atmosphere good indicator of life even in early stages
- spectroscopic detection possible
- in infra-red to reduce background from star
- good for 3-atom molecules
- detect $\mathrm{CO}_{2}$ (atmosphere),
$\mathrm{H}_{2} \mathrm{O}$ (oceans), $\mathrm{O}_{3}$ (life)

Simulated image and spectrum from DARWIN homepage


## Life like us?

- How probable is evolution of intelligent organisms with technological civilisation?
- Drake equation (Frank Drake, SETI pioneer)
- Number of communicating civilisations = rate of formation of suitable stars $\nabla$ x fraction of these stars with planets $\nabla$ x number of Earth-like planets per system $\nabla$ $x$ fraction of such planets which develop life $\nabla$ $x$ fraction of life-bearing planets evolving intelligence $x$ fraction of intelligent species developing technology $x$ average lifetime of such a civilisation ? ?
- information obtainable on factors marked $\nabla$
- last three very difficult to estimate
- rough guess: assume 10 stars/year and all fractions $=0.1$; then number of civilisations = average lifetime/10000


## Search for Extra-Terrestrial Intelligence



## What if....

- Conversations with alien intelligence requires patience!
- disc of Milky Way is $\sim 40000$ light years in radius
- optimistically suppose 1000 civilisations
- nearest one, on average, 2000 light years away
- wait 4000 years for answer: not very practical...
- so, don't converse, just send Encyclopaedia Britannica and assume they will too
- advantage: will also take 4000 years for their invasion fleet to get here.....
- They're not there because they're not here?
- unmanned (unaliened?) probes could in principle colonise Galaxy
- fact that this has not happened suggests no advanced civilisations?
- advanced civilisations are all eco-warriors, robot probes environmentally unfriendly?


## Conclusions

- Evidence from history of life on Earth is that origin of life may be easy
- evidence of past existence of life on Mars would be strong confirmation of this
- Basic criteria for stars "suitable" for life are not too difficult to satisfy
- detection of Earth-like planets around nearby stars possible on 10-20 year timescale
- spectroscopy could provide evidence for life on these planets
- Other technological civilisations might exist
- probability depends on hard-to-estimate factors
- radio searches so far found nothing, but you never know...
- even if they do exist, United Federation of Planets probably precluded by large distances (at least on basis of current physics)

