Atoms and Starlight

- Why do the stars shine?
 - planets shine by reflected sunlight—but what generates the Sun's light?
- What does starlight tell us about the stars?
 - their temperature
 - their chemical composition
 - their motion towards or away from us
 - sometimes, their age

Susan Cartwright

Our Evolving Universe

<section-header><section-header>

Susan Cartwright

Our Evolving Universe

Measuring light

- intensity
 - how bright is the source?
- wavelength
 what colour is the light?
- Use prism or grating to spread light into a spectrum
- → our basic information: intensity as function of wavelength

3

Susan Cartwright

Our Evolving Universe

Atoms and light

- Electrons in atoms occupy certain fixed energy levels (orbitals)
 - basis of chemistry
 - moving electron to higher level requires energy; moving to lower level releases energy
 - absorption or emission of photons of light of specific wavelength (energy)

→ these patterns of emission or absorption provide a "fingerprint" for any element

5

Susan Cartwright

Our Evolving Universe

Blackbody radiation Light from hot solid objects is not made up of emission lines • collisions between atoms and photons of light change photon energies • result is continuous spectrum if object has no intrinsic • colour (blackbody) spectrum depends only on its temperature hotter = bluer and b 6

Susan Cartwright

Our Evolving Universe

Susan Cartwright

Our Evolving Universe

9

Susan Cartwright

Our Evolving Universe

Moving stars

- Doppler shift can help us measure the motion of stars
 - in binary systems
 - in their orbits around the Galactic centre
 - in other galaxies
 - It can also provide evidence for planets around other stars
 - and tell us about the history and fate of the universe

13

Susan Cartwright

Our Evolving Universe

What have we learned? The colour of a star tells The positions of spectral us its temperature lines tell us about motion blue stars are hot • redder than expected: (>10000 K) moving away from us red stars are cool • • bluer than expected: (~3000 K) moving towards us The spectral lines confirm If we know colour (i.e. its temperature and tell us temperature) and about its composition luminosity, we can deduce • all stars are mainly size hydrogen and helium everything else typically ~1-2% or less • from form of blackbody radiation Susan Cartwright **Our Evolving Universe** 14

What do we now know about relatively nearby stars?

