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Discovering neutrinos

» Neutrinos have
e NO charge
o very little mass
o very weak interactions with everything else

» Why would anyone suspect their existence?
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Discovering neutrinos

e Fermi’'s theory of weak force
(1933) assumed the existence
of the neutrino, but nobody had
detected one directly
o Pauli worried that he might have postulated a

particle which was literally impossible to detect

» Neutrinos interact so weakly that they are
very hard to see

e you need a very intense source to make up for
the extremely small chance of any given neutrino
interacting
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Discovering neutrinos

» Enter Fred Reines and Clyde
Cowan (1950s)
e Plan A: use a bomb!
lots of neutrinos from fission fragments

detect via
Vetp—er+n
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Discovering neutrinos

» Enter Fred Reines and Clyde
Cowan (1950s)

e Plan B: use a nuclear reactor
lots of neutrinos from fission fragments

detect via
Vetp—e€e"+n

produced when it | | when it is captured

detect y rays v late y rays emitted
annihilates with e~ ( by a nucleus

detector survives...
can repeat experiment
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Neutrinos and their friends

THE STANDARD MODEL

e Standard Model of o e
particle physics has ... .
three different ... .

neutrinos

e each associated with a ... .
charged lepton

¢ All have similar ... .
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properties
¢ no charge and almost no mass
e interact only via weak force and gravity
o apparently completely stable

* Recognise difference when they interact
o each will produce only its own charged lepton

Detecting neutrinos

e Neutrinos interact in two ways:

e charged current Ve ?

neutrino converts to charged
lepton (electron, muon, [tau]) W

you detect the lepton
e neutral current

neutrino just transfers energy Ve Ve
and momentum to struck object

you detect the recall, or the products YA
when it breaks up

« Either way you need a cheap method of
detecting charged particles—usually
leptons



Detecting neutrinos

 Radiochemical methods

to proton
new nucleus is unstable and decays
detect decay 2
« no directional or timing information §

but good performance at low
energies

used for solar neutrinos
«37Cl, "1Ga

Detecting neutrinos

» Cherenkov radiation
e nothing travels faster than the
speed of light in a vacuum

but in transparent medium
light is slowed down by factor n

charged particles aren’t

result: particle “outruns” its own
electric field, creating shock
front similar to sonic boom

seen as cone of blue light

e good directional and timing information,
some energy measurement
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Detecting neutrinos

Neutrinos and the Sun

e The Sun fuses hydrogen to helium
e 4 1He — “He + 2e* + 2v,

65 billion neutrinos per square centimetre per
second at the Earth

unfortunately rather low energy, so difficult to detect
even by neutrino standards

« radiochemical experiments detected too few

neutrinos Cerenkov Light
so did water Cherenkovs v 0”‘"‘”‘”"° electron
e Solar Neutrino Problem \ B Oe -

9>
electron \ v

o

neutrino



10/10/2013

Neutrinos and the Sun

e Solar problem or
neutrino problem?

e need to count all
neutrinos—not just
those associated with
electrons

* SNO experiment

o heavy water
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Neutrinos and supernovae

e Massive stars
explode as
supernovae
when they
form an iron
core which
collapses
under gravity
e Neutron star formed: p+e~ —n +v,

e also thermal neutrino production, e.g. ete™—vv
» 99% of the energy comes out as neutrinos

and neutrinos drive the shock that produces the
explosion
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« In Large Magellanic Cloud, 160000 light years away
 First naked-eye SN for nearly 400 years
e 20-25 neutrinos detected :

Kamiokande
e IMB
4 Baksan
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Kamiokande nearly missed the SN because of routine calibration, which
took the detector offline for 3 minutes just before the burst...

...needless to say they changed their calibration strategy immediately
aferwards so that only individual channels went offline!

Nhit :

1

...and IMB were
missing ¥ of their

blank spot

. during 3 minutes
PMTs as a result of a -

80

high-voltage trip—
fortunately they were
able to recover data
from the working tubes

I Gain-checking blank L GETD

Time in seconds
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Neutrinos and Dark Matter

« If neutrinos change type

e which they do, as shown by solar neutrino results
« then they must have (different) masses

e« essentially to provide an alternative labelling

system
« Neutrinos are very common in the cosmos

e ~400/cc
e SO could massive neutrinos solve the dark

matter problem?
e note that “massive” neutrinos have very small
masses—travel close to speed of light in early

universe (hot dark matter)

“Hot” and “cold” dark matter

Faster-moving (“hot”) dark matter
| smears out small-scale structure

Simulations with cold dark
matter reproduce observed
structures well

Dark matter is not massive
neutrinos
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Neutrinos and the Universe

e Matter in the
Universe is matter
e not 50/50
matter/antimatter
e Why not?

masses of matter and
antimatter particles are
the same

interactions almost the
same

should be produced in

equal quantities in early

universe

e« Sakharov conditions

for matter-antimatter
asymmetry
e baryon number
violation
to get B>0 from initial
B=0
e lack of thermodynamic
equilibrium
to ensure forward
reaction > back reaction

e CP violation

What is CP violation?

e C = exchange particles and antiparticles
e P =reflect in mirror (X,y,2) — (-X,-Y,-2)
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Survival Probability

Neutrinos and CP violation

» Standard Model nearly but not quite
conserves CP
o CP violation observed in decays of some mesons
(gg states)—K?, B
however this is not enough to explain observed
level of asymmetry

e neutrino sector is the other place where CP
violation expected
consequence of flavour changes
need all three types of neutrinos to be involved

Neutrino Oscillations

Solar neutrinos Atmospheric neutrinos
* v, into either v, or v, e v, into v,
¢ established by SNO e« established by Super-
Kamiokande
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The third neutrino oscillation

T2K measurement

Far Detector

target/ ~ Decay volume  Myon (Superk)
p Horn 1T detector i E
— el (et S >
proten [ ST EERMATTTTEEES =
30GeV protons
trom J-PARC MR —F— T HV — ‘
0om 118 m 295 km

 Make v, beam—search for v, appearance

 Find 28 events
e expect 4 or 5 background
o for normal hierarchy

sin®26,; =0.15073:9%

[ —— RUNI4 data
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Number of events

PID parameter
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Reactor experiments

» Observe disappearance of low-energy v,
(energy too low to see expected v,)

» Good signals from Daya Bay (China),
RENO (Korea), Double Chooz (France)
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~ Conclusion

Neutrinos are fascinating but difficult to study

Present and future neutrino experiments can tell
us much about the Universe we live in

Watch this space!
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