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Lectures 5-8: Fourier Series 
 
References  Jordan & Smith Ch.26,  Boas Ch.7, Kreyszig Ch.11  
Some fun ‘java applet’ demonstrations are available on the web. Try putting ‘Fourier series applet’ into Google and 
looking at the sites from jhu, Falstad and Maths Online Gallery.   
 
1. Introduction to Fourier Series   
Consider a length of string fixed between rigid supports. The full behaviour of this system can be found 
by solving a wave equation – a partial differential equation. We will do this later in the course. For now 
we will just recall the basic properties of waves of strings which we already know:  
There is a fundamental mode of vibration. Call the frequency of this mode f and the time period T. 
Then there are various harmonics. These have frequency 2f, 3f, 4f, 5f, …, nf, … 
 

In practice, when a piano or guitar or other string is hit or plucked, it does not vibrate purely in one mode 
– the displacement of the string is not purely sinusoidal, the sound emitted is not all of one frequency. In 
practice, one normally hears a large amount of the fundamental plus smaller amounts of various 
harmonics. The proportions in which the different frequencies are present varies – hence a guitar sounds 
different from a violin or a piano, and a violin sounds different if it is bowed from if it is plucked!  
(See http://www.jhu.edu/~signals/listen/music1.html pages 1&2) 
 
Remember that if the fundamental frequency has frequency f, its period T = 1/f.  
A harmonic wave of frequency nf  will then have a period T/n, but obviously also repeats with period T.  
So if we add together sinusoidal waves of frequency  f, 2f, 3f, 4f,… the result is a (non-sinusoidal) 
waveform which is periodic with the same period T as the fundamental frequency,  f = 1/T.     
[E.g. play with http://www.falstad.com/fourier/ ] 
 
Sometimes we use the angular frequency ω where the nth harmonic has ωn = 2πnf = 2πn/Τ. 
The various harmonics are then of the form Asinωnt.   
 

Illustration:                  

      sinωt

          
    0.5 sin2ωt   

  
    0.5 sin3ωt

     

                   

y1(t) = sinωt+ 0.5 sin2ωt+ 0.5 sin3ωt

 
 
For all the functions above, the average value over a period is zero. 
If we add a constant term, the waveform remains periodic but its average value is no longer zero: 
                     

                            

y2(t) = 1 + sinωt+ 0.5 sin2ωt+ 0.5 sin3ωt
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What is really useful is that this works in reverse:  

Any periodic function with period T can be expressed as the sum of a constant term plus harmonic 
(sine and cosine) curves of angular frequency ω, 2ω, 3ω, ...  where ω = 2π/T .  
 

i.e. we can write
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where ω = 2π/T. 

 
We will later prove this result mathematically, and later in the semester will see that it can be deduced 
from the general solution of the wave equation. For now you may be able to persuade yourself of its 
plausibility by playing with the various websites – for example, the demonstrations of how ‘square’ or 
‘triangular’ waveforms can be made from sums of harmonic waves. The more terms in the sum, the closer 
the approximation to the desired waveform. Hence in general, an infinite number of terms are needed. 
 
Why is this useful? 

In lecture 4 we solved the ‘forced harmonic oscillator’ equation tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++ . 

Such an equation could describe, for example, the response of an electrical LCR circuit to a sinusoidal 
driving voltage. But what would happen if we applied a square wave driving voltage?? Using Fourier 
theory, we would just need to express the square waveform as a sum of sinusoidal terms. Then the 
response would be the sum of the solutions for each term (which would all have similar form, but involve 
different multiples of ω thus also have different amplitudes). Throughout physics there are many similar 
situations. Fourier series means that if we can solve a problem for a sinusoidal function then we can solve 
it for any periodic function!  

And periodic functions appear everywhere! Examples of periodicity in time: a pulsar, a train of electrical 
pulses, the temperature variation over 24 hours or the average daily temperature over a year 
(approximately). Examples of periodicity in space: a crystal lattice, an array of magnetic domains, etc. 

 
2. Towards Finding the Fourier Coefficients 
To make things easy let’s say that the pattern repeats itself every 2π metres, so L = 2π. The Fourier series 
can then be expressed more simply in the form  

 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

 
Now we want to find expressions for the coefficients an and bn. 
To do this we need two other bits of preparatory mathematics … 

Other Forms 
If we want to work in terms of t not ω, the formula becomes 

∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn T

tnb
T

tnaatf ππ . 
 

Or similarly for a function f(x) which is periodic in space with repetition length L, we have  

 ∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L

xnb
L

xnaaxf ππ . 
 

(Any value of T or L can be used, although to keep the algebra straight forward, most questions will 
set 

T as 2π or even L as 2π metres.)  
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(a) Average Value of a Function 
Consider a function y = f(x). The average value of the function 

between  x = a  and  x = b  is defined to be   ∫−
b

a
dxxf

ab
)(1

. 
 

Geometrically this means that the area under the curve f(x) between 
a and b is equal to the area of a rectangle of width (b-a) and height 
equal to this average value.  
 

Note that while average values can be found by evaluating the above integral, sometimes they can be 
identified more quickly from symmetry considerations, a sketch graph and common sense! 
Two particularly important results are: 

 

 
 

Actually both these results can be generalized. It is easily shown that: 
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Hence      0cossin
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0
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ππ
dxnxdxnx       and  π

ππ
== ∫∫

2

0

22

0

2 cossin dxnxdxnx      (n ≠ 0) 
 

Note: We have written all the integrals over [0, 2π] but any interval of width 2π can be used,  
e.g. [–π, π], [13.1π, 15.1π], etc.  
 
(b) Orthogonality (Proofs in the Appendix) 
Sines and cosines have an important property called ‘orthogonality’: 

• The product of two different sine or cosine functions, integrated over a period, gives zero: 

0cossin
2

0
=∫

π
dxmxnx    for all n, m 

0coscossinsin
2

0

2

0
== ∫∫

ππ
dxmxnxdxmxnx   for all n ≠ m 

 

Again we can integrate over any period. 
 
Equipped with these results we can now find the Fourier coefficients … 
 
3.  Fourier Coefficients – Derivation 

Earlier we said any function f(x) with period 2π can be written ∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

Take this equation and integrate both sides over a period (any period): 

 ∑ ∫∫∫∫
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Clearly on the RHS the only non-zero term is the a0 term:   00

2

00

2

0
)02(

2
1

2
1)( aadxadxxf ππ

ππ
=−== ∫∫  

 hence we find    ∫=
π

π
2

00 )(1 dxxfa .            i.e. a0 /2  is the average value of the function f(x). 
 

• The average value of a sine or cosine function over a period is 
zero:  

0cos
2
1sin

2
1sin

2
1 2

0

2

0
=== ∫∫∫−

πππ

π πππ
dxnxdxnxdxnx .   

• The average value of cos2 or sin2 over a period is ½:     
2 22 2
0 0

1 1 1sin cos
2 2 2

x dx x dx
π π

π π
= =∫ ∫ . 
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Now take the original equation again, multiply both sides by cosx, then integrate over a period: 

∑ ∫∫∫∫
∞
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On the RHS, this time only the a1 term survives as it is the only term where n=1 (see Orthogonality.) 

 π
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The method for finding the coefficients an should thus be clear. To find a general expression for an we can 
take the equation, multiply both sides by cosmx, then integrate over a period: 
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On the RHS, only the am term survives the integration: 

π
ππ

mm adxmxamxdxxf == ∫∫
2

0

22

0
coscos)(        hence    ∫=

π

π
2

0
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In a similar way, multiplying both sides by sinmx, then integrating over a period we get: 

  ∫=
π

π
2

0
sin)(1 dxmxxfbm  

 
4.  Summary of Results 

A function f(x) with period 2π can be expressed as    ∑
∞

=

++=
1
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2
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where     ∫=
π
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The more general expression from page 2 can be written as:- 

A function f(x) with period L can be expressed as    ∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L
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L
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where     ∫=
L
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b
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Note 
1) The formula for a0 can be obtained from the formula for an just by setting n = 0. 
2) The integrals above are written over [0, 2π] and [0, L] but any convenient interval of width one period 
may be used, and this will be dependent on the nature of the function (see examples and Phil’s Problems). 
3) The equations can be easily adapted to work with other variables or periodicities. For example, for a 
function periodic in time with period T just replace x by t and L by T. 

4) A few books use the alternative form   0
0

1

( ) cos( )
2 n n

n

dF t d n tω θ
∞

=

= + +∑   and find values of dn and θn. 

 
5.  Examples  

Example 1     
Find a Fourier series for the square wave shown. 
 

We have 
⎩
⎨
⎧
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x

xf      The period is 2π.     

 
Using our formulae for the coefficients we have:        
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So all the an coefficients are zero for n ≥ 1. 
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So when n = odd ; cos nπ = -1 so bn=odd = ⎟
⎠
⎞

⎜
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⎜
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So when n = even ; cos nπ = 1 so bn=even = 0111
=⎟

⎠
⎞

⎜
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−
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The standard Fourier series expression is    ∑
∞

=

++=
1

0 sincos
2
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n
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So the resulting series is:  ∑+=++++=
oddn
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5
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Think: After reaching your answer, ask yourself: is this result sensible?  

- Does the term a0/2  look like an appropriate value for the average value of the function over a period? 
- Would we expect this function to be made mainly of sines or of cosines? (See later for symmetry). 
- In what proportions would we expect to find the fundamental and the various harmonics? 

(You can also try checking your answer by ‘building’ the series at http://www.falstad.com/fourier/ or 
http://www.univie.ac.at/future.media/moe/galerie/fourier/fourier.html ) 
 
Example 2   
Find a Fourier series of the function shown: 
 

Again the period is 2π. 
But this time it is easiest to work with the range [-π, π].  
N.B. If we wanted we could use the range [0,2π] and get 
the same answer, but it would be more fiddly. 
 
Between -π and π,   f(x) is a straight line with gradient 1 and a Y-intercept of π.  
So we can write  f(x) = x + π      −π < x < π. 
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We must integrate ∫−

π

π
dxnxx cos  by parts: ∫ ∫−= vduuvudv       so set  u  = x and    cos nx dx = dv 
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So du = dx   and    nx
n

nxdxv sin1cos == ∫ .    
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Going back to an ,   
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Now let’s find the bn coefficients…. 
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We must integrate ∫−

π

π
dxnxxsin  by parts: ∫ ∫−= vduuvudv       so set  u  = x and    sin nx dx = dv 
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Going back to bn  
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Notes 
1) Where a function has discontinuities, the Fourier Series converges to the midpoint of the jump (e.g. in 
example 1 at x = 0, π, etc the series has value ½). 
2) In general the lowest frequency terms provide the main shape, the higher harmonics add the detail. 
When functions have discontinuities, more higher harmonics are needed. Hence in both the above 
examples the terms drop off quite slowly. In general, for smoother functions the terms drop off faster. 
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Therefore the Fourier series of an 
even function contains only 
cosine terms.  

Similarly, the Fourier series of an 
odd function contains only sine 
terms. 

6.  Even and Odd Functions 
For an even function,  fe(-x) = fe(x)     i.e. the graph y = f(x) has reflectional symmetry in the y-axis. 

For an odd function,   fo(-x) = - fo(x)   i.e. the graph y = f(x) has 180º rotational symmetry about the origin. 

Any sum of even functions is also an 
even function.  
Hence ∑∞

=0
cos

n n nxa  is always an 
even function.  

 
It is exceptionally useful to remember this! E.g. if you are asked to find the Fourier series of a function 
which is even, you can immediately state that bn = 0 for all n, meaning that there will be no sine terms. 
 
You should also remember the following facts (easily verified algebraically or by sketching graphs): 

• The product of an even function and an even function is even 

• The product of an odd function and an odd function is even 

• The product of an even function and an odd function is odd 
 
 
Example 3 
Find a Fourier series of the function shown: 
 
The period is L. As discussed earlier we can 

integrate over any full period e.g. ∫
L

0
or ∫−
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L
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The function is even and can be written f(x) =1 for 4

3
4

LxL ≤≤ . Therefore there will be no sine terms 

(bn = 0 for all n) and I feel like integrating between 0 and L. The series will have form 
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Expression for an is not very pretty and easy to make mistakes with. Write out a table to help with 
assignment of coefficients…. 
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n = 1 n = 2 n = 3 n = 4 
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 7.  Half-Range Series 
Sometimes we want to find a Fourier series representation of a function which is valid just over some 
restricted interval. We could do this in the normal way and then state that the function is only valid over a 
specific interval. However, the fact that we can do this allows us to use a clever trick that reduces the 
complexity of a problem. We will study this by considering the following example: 

Example 4 
Consider a guitar string of length L which is being plucked.  

(Note on application: If a string was released from this position, finding this 
Fourier series would be a crucial step in determining the displacement of the 
string at all subsequent times – see later in course.) 

We could, as before, apply the Fourier series to a pretend infinite series of plucked strings and then say 
that the expression was only valid between 0 and L. 

 
However this series would contain both sine and cosine terms as there is neither even nor odd symmetry, 
and so would take ages to solve. There is a much more clever way to proceed…. 

Note that we are only told the form of the function on the interval [0, L]. All that matters is that the series 
corresponds to the given function in the given interval. What happens outside the given interval is 
irrelevant. The way to tackle such a problem is to consider an artificial function which coincides with the 
given function over the given interval, but extends it and is periodic. Clearly we could do this in an 
infinite number of different ways, however in the previous section, we observed that the Fourier series of 
odd and even functions are particularly simple. It is therefore sensible to choose an odd or even artificial 
function! 

If the original function is defined on the range [0, L] then there are always odd and even artificial 
functions with period 2L. In this case these look like: 

         
These functions are called the odd extension and even extension respectively. 
Their corresponding Fourier series are called the half-range sine series and half-range cosine series. 

Theory 
We saw earlier that for a function with period L the Fourier series is:-  

∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L

xnb
L

xnaaxf ππ ,  where ∫=
L

n dx
L

xnxf
L

a
0

2cos)(2 π , ∫=
L

n dx
L

xnxf
L

b
0

2sin)(2 π  

 
In this case we have a function of period 2L so the formulae become 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn x

L
nbx

L
naaxf ππ ,  where ∫−

=
L

Ln dx
L

xnxf
L

a πcos)(1 , ∫−
=

L

Ln dx
L

xnxf
L

b πsin)(1  
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Remembering also that  ∫∫ =
−

b

e

b

b e dxxfdxxf
0

)(2)( ,   we get the following results: 

Half-range cosine series:   ∑
∞

=

+=
1

0 cos
2
1)(

n
n L

xnaaxf π ,         where  ∫=
L

n dx
L

xnxf
L

a
0

cos)(2 π . 

Half-range sine series:       ∑
∞

=

=
1

sin)(
n

n L
xnbxf π ,                    where  ∫=

L

n dx
L

xnxf
L

b
0

sin)(2 π . 

 

Note : The resulting series is only valid over the specified interval! 
 
Example 5 
Find a Fourier series which represents the displacement y(x), 
between x = 0 and L, of the ‘plucked string’ shown. 
 
Let us choose to find the half-range sine series. 

We have  
⎩
⎨
⎧

<<−
<<

=
LxLLdxL

LxLdx
xy

2)(2
202

)(  

So   
0

2 sin ( )
L

m
m xb dx Y x

L L
π

= ∫
/ 2

0 / 2

2 2 2 2sin ( )sin
L L

L

dx m x d m xdx dx L x
L L L L L L

π π
= + −∫ ∫  

Using integration by parts, it can be shown that the result is:     bn    2 2

8 sin
2

d m for m odd
m

π
π

=  

               =  0               for       m     even 

So for  0 < x < L  we have     2

8 1 3 1 5 1 7( ) sin sin sin sin .........
9 25 49

d x x x xY x
L L L L

π π π π
π

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
 

Work out the full solution for yourself. This question is answered in “Phil’s problems”. 
 
8.  Further Results 

a) Complex Series. 
For the waves on strings we need real standing waves. But in some other areas of physics, especially solid 
state physics, it is more convenient to consider complex or running waves. 
Remember that: 

1 1cos ( ); sin ( )
2 2

ikx ikx ikx ikxkx e e kx e e
i

− −= + = − = )(
2

ikxikx eei −−
−  

 
The complex form of the Fourier series can be derived by assuming a solution of the 

form ∑
∞

−∞=

=
n

inx
necxf )( and then by evaluating the coefficients as in section 3, taking the expression and 

multiplying both sides by e-imx and integrating over a period: 

 ∑ ∫∑ ∫∫
∞

−∞=

−
∞

−∞=

−− ==
n

xmni
n

n

imxinx
n

imx dxecdxeecdxexf
πππ 2

0

)(2

0

2

0
)(  

For n m≠ the integral vanishes. For n=m the integral gives 2π.  Hence  dxexfc inx
n

−∫=
π

π
2

0
)(

2
1  

Complex Fourier Series for a function of period 2π:   ∑
∞

−∞=

=
n

inx
necxf )(    where   dxexfc inx

n
−∫=

π

π
2

0
)(

2
1  

The more general expression can be written as:- 

A function f(x) with period L can be expressed as:-  ∑
∞

−∞=

=
n

Linx
necxf π2)(    where  dxexf

L
c LinxL

n
/2

0
)(1 π−∫=  
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Let’s have a look at an example of complex Fourier series. 
 
Example 6 
Find the complex Fourier series for f(x) = x in the range -2 < x < 2 if the repeat period is 4. 

dxexf
L

c LinxL

n
/2

0
)(1 π−∫=   and the period is 4. So we can write  dxexc inx

n
2/2

24
1 π−

−∫= .   

Integration by parts ∫∫ −= duvuvdvu   with u = x and dv = dxe inx 2/π−  so du = dx  and 22 inxe
in

v π

π
−−

=  

2

2

22 22
4
1

−

−−
⎥⎦
⎤

⎢⎣
⎡ +
−

= ∫ dxe
in

e
in

xc inxinx
n

ππ

ππ
=

2

2

2
222

2 42
4
1

−

−−
⎥⎦
⎤

⎢⎣
⎡ −
− inxinx e

ni
e

in
x ππ

ππ
=

2

2

2
22

2 1
2 −

−−
⎥⎦
⎤

⎢⎣
⎡ +

− inxinx e
n

e
in
x ππ

ππ
 

 

( ) ( )inininininininin
n ee

n
ee

in
e

n
e

in
e

n
e

in
C ππππππππ

ππππππ
−++

−
=⎥⎦

⎤
⎢⎣
⎡ +−⎥⎦

⎤
⎢⎣
⎡ +

−
= −−−−

222222
111111  

 

Since i
i
i

i
=×

−1   then  ( ) ( )inininin
n ee

n
ee

n
iC ππππ

ππ
−++= −−

22
1  

 
It is known that since πππ nine in sincos +=  and πππ nine in sincos −=−  then …… 

( )inin een πππ += −

2
1cos  and ( )inin ee

i
n πππ −

−
= −

2
1sin   so we say π

π
π

π
π

π
n

n
in

n
in

n
iCn cos2sin2cos2

22 =−=  

 

So ( ) n
n n

in
n
iC 12cos2

−==
π

π
π

  and since ∑
∞

−∞=

=
n

Linx
necxf π2)(   then ( )∑

∞

−∞=

−=
n

inxne
n
ixf 212)( π

π
 

 
 
b) Parseval’s Theorem 

Consider again the Fourier series   ∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

Square both sides then integrate over a period:   [ ] dxnxbnxaadxxf
n

n
n

n

2

11
0

2

0

2

0

2 sincos
2
1)( ⎥

⎦

⎤
⎢
⎣

⎡
++= ∑∑∫∫

∞

=

∞

=

ππ
 

The RHS will give both squared terms and cross term. When we integrate, all the cross terms will vanish. 
All the squares of the cosines and sines integrate to give π (half the period).  Hence 

[ ] ][
4

2)( 2

1

2
2

02

0

2
n

n
n baadxxf ++= ∑∫

∞

=

ππ
π

     
 

The energy in a vibrating string or an electrical signal is proportional to an integral like [ ] dxxf∫
π2

0

2)( . 

Hence Parseval’s theorem tells us that the total energy in a vibrating system is equal to the sum of the 
energies in the individual modes.  
                                                      
 
 
                               Taken from PHY102                       
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Appendix: Orthogonality 
 
At a fundamental mathematical level, the reason the Fourier series works – the reason any periodic 
function can be expressed as a sum of sine and cosine functions – is that sines and cosines are orthogonal. 
 
In general, a set of functions u1(x), u2(x), … , un(x),…  is said to be orthogonal on the interval [a, b] if  

 
⎩
⎨
⎧

=
≠

=∫ mnc
mn

dxxuxu
n

b

a mn

0
)()(         (where cn is a constant). 

 
Here we will prove that function sinnx, cosmx, etc are orthogonal on the interval [0, 2π]. 
 

1.  ∫∫ −−+=
ππ 2

0

2

0
)sin()sin(

2
1cossin dxxmnxmndxmxnx    [Using sin( ) sin( ) 2sin cosa b a b a b+ − − = ] 

   0)cos(1)cos(1
2
1 2

0

=⎥⎦
⎤

⎢⎣
⎡ −

−
++

+
−=

π

xmn
mn

xmn
mn

 

Hence    0cossin
2

0
=∫

π
dxmxnx  for n ≠ m. 

 

2.  ∫∫ +−−=
ππ 2

0

2

0
)cos()cos(

2
1sinsin dxxmnxmndxmxnx    [Using cos( ) cos( ) 2sin sina b a b a b− − + = ] 

   0)sin(1)sin(1
2
1 2

0

=⎥⎦
⎤

⎢⎣
⎡ −

−
−−

−
=

π

xmn
mn

xmn
mn

 

Hence    0sinsin
2

0
=∫

π
dxmxnx  for n ≠ m. 

 

3.  ∫∫ −++=
ππ 2

0

2

0
)cos()cos(

2
1coscos dxxmnxmndxmxnx     [Using cos( ) cos( ) 2cos cosa b a b a b− + + = ] 

   0)sin(1)sin(1
2
1 2

0

=⎥⎦
⎤

⎢⎣
⎡ −

−
++

+
=

π

xmn
mn

xmn
mn

 

Hence    0coscos
2

0
=∫

π
dxmxnx  for n ≠ m. 

 
For n = m ≠ 0  the integrals becomes:   

1.  02cos
4
12sin

2
1cossin

2

0

2

0

2

0
=⎥⎦

⎤
⎢⎣
⎡−== ∫∫

π
ππ

nx
n

dxnxdxnxnx  

2.  π
π

ππ
=⎥⎦

⎤
⎢⎣
⎡ −=−= ∫∫

2

0

2

0

2

0

2 2sin
2
1

2
1)2cos1(

2
1sin nx

n
xdxnxdxnx  

3.  π
π

ππ
=⎥⎦

⎤
⎢⎣
⎡ +=+= ∫∫

2

0

2

0

2

0

2 2sin
2
1

2
1)2cos1(

2
1cos nx

n
xdxnxdxnx  

For n = m = 0  the first two integrals become 00
2

0
=∫

π
dx  and the third becomes π

π
21

2

0
=∫ dx  

 
Note 

1. Similar results can be proved for function of periodicity L. 
2. The results (n ≠ 0) are easy to remember: ALL integrals over sines and cosines over a full period 

give zero, unless the integrand is a square in which case the integral is always equal to half the 
range of the integral. 


