PHY?226
Lectures 5-8: Fourier Series

References Jordan & Smith Ch.26, Boas Ch.7, Kreyszig Ch.11
Some fun ‘java applet’ demonstrations are available on the web. Try putting ‘Fourier series applet’ into Google and
looking at the sites from jhu, Falstad and Maths Online Gallery.

1. Introduction to Fourier Series

Consider a length of string fixed between rigid supports. The full behaviour of this system can be found
by solving a wave equation — a partial differential equation. We will do this later in the course. For now
we will just recall the basic properties of waves of strings which we already know:

There is a fundamental mode of vibration. Call the frequency of this mode f and the time period T.
Then there are various harmonics. These have frequency 2f, 3f, 4f, 5f, ..., nf, ...

In practice, when a piano or guitar or other string is hit or plucked, it does not vibrate purely in one mode
— the displacement of the string is not purely sinusoidal, the sound emitted is not all of one frequency. In
practice, one normally hears a large amount of the fundamental p/us smaller amounts of various
harmonics. The proportions in which the different frequencies are present varies — hence a guitar sounds
different from a violin or a piano, and a violin sounds different if it is bowed from if it is plucked!

(See http://www.jhu.edu/~signals/listen/music.html pages 1&2)

Remember that if the fundamental frequency has frequency f, its period 7' = 1/f.

A harmonic wave of frequency nf will then have a period 7/x, but obviously also repeats with period 7.
So if we add together sinusoidal waves of frequency f, 2f, 3f, 4f,... the result is a (non-sinusoidal)
waveform which is periodic with the same period T as the fundamental frequency, f=1/T.

[E.g. play with http://www.falstad.com/fourier/ ]

Sometimes we use the angular frequency @ where the nth harmonic has @, = 27mf=27m/T.
The various harmonics are then of the form Asinw,t.

IMlustration:
~—
T
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. \/ /
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N /\ﬂ A y1(t) = sinat+ 0.5 sin2wt+ 0.5 sin3wt

For all the functions above, the average value over a period is zero.
If we add a constant term, the waveform remains periodic but its average value is no longer zero:

T/’\J\/\ /Rr\ /(\ yo(t) =1 + sinawt+ 0.5 sin2@wt+ 0.5 sin3awt
T \jl . \}I
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What is really useful is that this works in reverse:

Any periodic function with period T can be expressed as the sum of a constant term plus harmonic
(sine and cosine) curves of angular frequency o, 2w, 3w, ... where @ =27/T .

1 . .
i.e. we can write |F(¢)= an +(ay cos wt + by sin wt) + (a, cos 2wt + b, sin2wt) +...

1 - .
=—ag+ z a, cosnwt + b, sin nat where o = 272/T.

n=l

We will later prove this result mathematically, and later in the semester will see that it can be deduced
from the general solution of the wave equation. For now you may be able to persuade yourself of its
plausibility by playing with the various websites — for example, the demonstrations of how ‘square’ or
‘triangular’ waveforms can be made from sums of harmonic waves. The more terms in the sum, the closer
the approximation to the desired waveform. Hence in general, an infinite number of terms are needed.

Why is this useful?

+ o) x(t)=F cosart .

2

In lecture 4 we solved the ‘forced harmonic oscillator’ equation %x(t) +2y d);(tt)
Such an equation could describe, for example, the response of an electrical LCR circuit to a sinusoidal
driving voltage. But what would happen if we applied a square wave driving voltage?? Using Fourier
theory, we would just need to express the square waveform as a sum of sinusoidal terms. Then the
response would be the sum of the solutions for each term (which would all have similar form, but involve
different multiples of ® thus also have different amplitudes). Throughout physics there are many similar
situations. Fourier series means that if we can solve a problem for a sinusoidal function then we can solve
it for any periodic function!

And periodic functions appear everywhere! Examples of periodicity in time: a pulsar, a train of electrical
pulses, the temperature variation over 24 hours or the average daily temperature over a year
(approximately). Examples of periodicity in space: a crystal lattice, an array of magnetic domains, etc.

Other Forms
If we want to work in terms of 7 not ®, the formula becomes

f(@) =%a0 +Zan cos 2n +b, sin 2nm :
n=l1

Or similarly for a function f{x) which is periodic in space with repetition length L, we have

1 > 2nx 2nmx
xX)=—a,+ » a cos +b sin——.
f( ) 2 0 Z n L n L

n=l

(Any value of T or L can be used, although to keep the algebra straight forward, most questions will
set
T as 2m or even L as 2w metres.)

2. Towards Finding the Fourier Coefficients
To make things easy let’s say that the pattern repeats itself every 27 metres, so L = 2x. The Fourier series
can then be expressed more simply in the form

1
f(x) =la0 + Zan cosnx +b, sinnx.
2 n=1
0 T 2W im

Now we want to find expressions for the coefficients @, and b,.
To do this we need two other bits of preparatory mathematics ...
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(a) Average Value of a Function Y
Consider a function y = f{x). The average value of the function \\
1 b
between x =a and x = b is defined to be J- f(x)dx|. A
b-a’c value =

Geometrically this means that the area under the curve f(x) between
a and b is equal to the area of a rectangle of width (b-a) and height
equal to this average value.

Note that while average values can be found by evaluating the above integral, sometimes they can be
identified more quickly from symmetry considerations, a sketch graph and common sense!
Two particularly important results are:

o The average value of a sine or cosine function over a period is o

zero. 06 5 \/
1 y4 1 27 1 27 a4 rf‘
—J. sinnxdx = —J. sinnxdx = —j cosnxdx=0. ol 7 /
27 270 20 _0_2|§ 135 fe0 45 Jfo 45 o0\ 135 180
B, Degrees
o The average value of cos’ or sin’ over a period is 5 06 \ / 1

08 —sin squared x
5 — cos squared x

1 27 . 1 ¢2 1
—I ”smzxdx:—.[ ﬂcoszxdx=—.
2790 2790 2

Actually both these results can be generalized. It is easily shown that:

Lr” sinnxdx = Lr” cosnxdx=0 and Lr” sin® nxdx = Lr” cos® nxdx = 1 forn+0
2790 2790 2790 2790 2

2T, 2 2r > 2r >
Hence J‘O sinnxdx = jo cosnxdx=0| and J‘O sin” nxdx = J; cos"nxdx=rx| (n#0)

Note: We have written all the integrals over [0, 2x] but any interval of width 27 can be used,
e.g. [-m, n], [13.1m, 15.1mx], etc.

(b) Orthogonality (Proofs in the Appendix)
Sines and cosines have an important property called ‘orthogonality’:
o The product of two different sine or cosine functions, integrated over a period, gives zero:

27
L sinnxcosmxdx=0 forall n, m

2r . 27
J. sin nx sin mx dx = J. cosnxcosmxdx =0 forall n#m
0 0

Again we can integrate over any period.

Equipped with these results we can now find the Fourier coefficients ...

3. Fourier Coefficients — Derivation

. . . . . . 1 ~ .
Earlier we said any function f{x) with period 2r can be written f(x) = 5 a, + Z a,cosnx+b, sinnx.

n=1

Take this equation and integrate both sides over a period (any period):

2r 1 2z = 2z 2z,
J-O f(x)dx = an L dx + ,,Z::' [an L cosnxdx+b, J-O sin nx dx}
Clearly on the RHS the only non-zero term is the ay term: J.OZH f(x)dx = %ao J.OZH dx = %ao 27 -0)=rm,

hence we find q, = lj.ozﬁ f(x)dx. 1.e. ag/2 is the average value of the function f{(x).
V4
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Now take the original equation again, multiply both sides by cosx, then integrate over a period:

2 1 2 = 2 2z,
J.O f(x)cosxdx = an IO cos xdx + z a, J.O cosnxcosxdx+b, J.O sin nx cos x dx

n=l1
On the RHS, this time only the a; term survives as it is the only term where n=1 (see Orthogonality.)

2r 2z 2z 1 27
J. f(x)cosxdx = al'[ cosxcosxdx = al.f cos’xdx=axr hence a,= —j f(x)cosxdx.
0 0 0 7
The method for finding the coefficients a, should thus be clear. To find a general expression for a, we can
take the equation, multiply both sides by cosmx, then integrate over a period:

2 1 27 > 27 2z,
J.O f(x)cosmxdx = an L cosmxdx + z a, IO cosnxcosmxdx+b, IO sin nx cos mx dx
n=1

On the RHS, only the a,, term survives the integration:

2 27 ) l 27
J.O f(x)cosmxdx=a,, J:) cos"mxdx=a,r hence a, = ;L f(x)cosmxdx .

In a similar way, multiplying both sides by sinmx, then integrating over a period we get:

1 (2x .
b, = —J. f(x)sinmx dx
T 0

4. Summary of Results

A function f{x) with period 2w can be expressed as  f(x) = %ao + Zan cosnx +b, sinnx

n=l

1 27 1 27 1 27 .
where 4, =— L fdv,  a,=— jo f@)cosnrds, b, =— L f(x)sinnxdx.

The more general expression from page 2 can be written as:-

A function f{x) with period L can be expressed as  f(x) = %ao + Zan cos 2n7m +b, sin 2nm
n=1
2 (L 2 (L 2nmx 2 (L . 2nmx
where a, = jo fod,  a, == L fx)cos==dx, b= ZL f@)sin==dx.

Note

1) The formula for @y can be obtained from the formula for a, just by setting n = 0.

2) The integrals above are written over [0, 2] and [0, L] but any convenient interval of width one period
may be used, and this will be dependent on the nature of the function (see examples and Phil’s Problems).
3) The equations can be easily adapted to work with other variables or periodicities. For example, for a
function periodic in time with period 7 just replace x by ¢ and L by 7.

4) A few books use the alternative form F(r) = do idn cos(nw,t +6,) and find values of d, and 6.

n=l1

5. Examples
Example 1
Find a Fourier series for the square wave shown. 1
Weh I O<x<7m Th od is 2
e have f(x)= 0 z<x<ir e period is 2m. 0 n o 3In ¢

Using our formulae for the coefficients we have:

1 p27 1 ¢~ 1 (27 1 L
a, :;J;) f()C)d.X =;J.0 1dx+;.[[ de=;[x]o =1
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a, :lr”f(x)cosnxdx :lr(l)cosnxdx+l.[2”(0)cosnxdx :lr cos nx dx :l[smnx} =0
70 w0 b/ 70 T n
So all the a, coefficients are zero forn > 1.
1 (2 : 1 . 1 por 1o . ~1[ cosnx |”
b, =—I f(x)smnxdx:—J. (1)s1nnxdx+—j (O)smnxdxz—J. sinnx dx = —
0 7T 0 T /Al V4 no |,

5 _ —1[ cosnx ”_—_1 cosnz  cos0 _—_l(cosnﬂ_l
" x|l n |, & n n 7 n n

So when n = o0dd ; cos nz = -1 50 bp=ogq = _—1(_—1 —lj = (i)
T\n n nrw

So when n =even ; cos nr =1 S0 by=even = —l(l—lj =0
T\n n

. . . 1 > .
The standard Fourier series expressionis  f(x) =—a, + z a, cosnx+b, sinnx
2 0 n n

n=l1

So the resulting series is:  f(x) = 1 + gsin Ix + isin 3x+ isin S5x+..)= 1 + 2 lein nx
2 T 371' 572- 2 T pnoda

Think: After reaching your answer, ask yourself: is this result sensible?
- Does the term ay/2 look like an appropriate value for the average value of the function over a period?
- Would we expect this function to be made mainly of sines or of cosines? (See later for symmetry).
- In what proportions would we expect to find the fundamental and the various harmonics?
(You can also try checking your answer by ‘building’ the series at http://www.falstad.com/fourier/ or
http://www.univie.ac.at/future.media/moe/galerie/fourier/fourier.html )

Example 2 A
Find a Fourier series of the function shown: / AR ! :
f . I
Again the period is 2. T / ! :
But this time it is easiest to work with the range [-wt, 7]. / i : :
N.B. If we wanted we could use the range [0,27] and get } : . 4
2K =A o n k| an K 57

the same answer, but it would be more fiddly.

Between -t and m, f(x) is a straight line with gradient 1 and a Y-intercept of m.

Sowe can write f(x) =x+ 7 —-7T<x<T
1 ¢r 1 or 1[x? S WA = 1(.
a, =— X)dx=—| (x+m)dx=—|—+m| =—|3—+n" —9——-7 =—2z° )=2x
‘ ﬂ-[-”f( ) 7["“”( ) 7Z'|: 2 }ﬁ 7[[{ 2 } { 2 72'( )
1 T 1 T 1 T 1 T
anz—j f(x)cosnxdx:—.[ (x+7r)cosnxdx:—_|. xcosnxdx+—.[ 7T cos nx dx
w - w r/a V4 - V4 -7

We must integrate J‘” xcosnxdx by parts: judv =uv— _[ vdu  soset u =xand cosnxdx =dv
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1 .
Sodu=dx and v=J-cosnxdx=—s1nnx.
n

T

7 X . =1 . X . 1

Soj xcosnxdx =—sinnx—| —sinnxdx=|—sinnx+—-cosnx| =0 (seep.3 average value)
- n “Tn n n .

Going back to ay,

a, = lr f(x)cosnxdx = lr (x+7m)cosnxdx =0+ lr meosnxdx =0 (see p.3 average value)
T T T
Now let’s find the b, coefficients....

b, :lr f(x)sinnxdx:lr (x+7r)sinnxdx:lr xsinnxdx+lr 7T sin nx dx
7T o o o

We must integrate J‘” xsinnxdx by parts: I udv =uv— Ivdu soset u =xand sinnxdx =dv

Sodu=dx and v:J‘sinnxdx:—lcosnx.
n

V1
T ) X T — X 1 .
SOI xsinnxdx =——cosnx—| —cosnxdx = ——cosnx +—sinnx
- n -7 n n n .

Going back to b,

. 1o . 1 x 1 . i
xsmnxdx+—j wsinnxdx = — ——COSnxX +—-sinnx +0
Vi T| n n .

@=%ﬁﬂ@mmﬁ=%r

-

T n n T n n

b, = 1 [— X cosnx + Lz sin nx} = 1 Hi cosnrm+ LZ sin nﬂj — (ﬂ cos(—nrm)+ Lz sin(—nz))}
. n n

Remember that cos(—nxz)=cos(nz) and sin(—nx)=—sin(nr)

So b, = l[(_ 2z COSnm+ %sin nirﬂ = —zcos nxz . What will b, be for different values of n?
Vs n n n

n=1 n=2 n=3 n=4
2 2 2 2 2 2 2 2 2 2 2
ICOSIﬂ' 1( ) . 2cos Vid 2() > 3cos T 3( ) 3 4cos T 4() 2

0 n+l

Hence f(x)= 2—7z+ 0+gsinx—gsin2x+gsin3x—%sin4x+... =7+ 22 =D sin nx

2 1 2 3 4 pari
Notes
1) Where a function has discontinuities, the Fourier Series converges to the midpoint of the jump (e.g. in
example 1 at x = 0, 7, etc the series has value '5).
2) In general the lowest frequency terms provide the main shape, the higher harmonics add the detail.
When functions have discontinuities, more higher harmonics are needed. Hence in both the above
examples the terms drop off quite slowly. In general, for smoother functions the terms drop off faster.

Phil Lightfoot 2008/9 Lecture 5 - Page 6 of 11



PHY226
6. Even and Odd Functions

For an even function, f.(-x) =f.(x) 1i.e. the graph y = f{x) has reflectional symmetry in the y-axis.
For an odd function, f,(-x) = - fo(x) i.e. the graph y = f(x) has 180° rotational symmetry about the origin.

1 Any sum of even functions is also an

0.8 , // even function.
06 _—>-<~ / Hence Zn:O a, cosnx is always an
04 & = = even function.
02 -
0 b i e N Therefore the Fourier series of an
0218 135 fo0 45 /0 _ 45 90, 135 1go| €ven function contains only
: Degrees cosine terms.
04 - : . .
06 —sin X Similarly, the Fourier series of an
o8 - cOS X odd function contains only sine
g terms.
-1

It is exceptionally useful to remember this! E.g. if you are asked to find the Fourier series of a function
which is even, you can immediately state that b, = 0 for all n, meaning that there will be no sine terms.

You should also remember the following facts (easily verified algebraically or by sketching graphs):
e The product of an even function and an even function is even
e The product of an odd function and an odd function is even

e The product of an even function and an odd function is odd

Example 3
Find a Fourier series of the function shown: 1
The period is L. As discussed earlier we can
L L/2 ] '
. . L L ) L L, 1
integrate over any full period e.g. J:) or I_L/z L& 0 Y% b % L

The function is even and can be written f(x) =1 for % <x< 3% . Therefore there will be no sine terms

(b, =0 for all n) and I feel like integrating between 0 and L. The series will have form

2nmx 2nnx

dx .

1 = 2 L 2 oL
f(x)=§a0+;an cos where a, == jo fde and a,=— jo f(x)cos

So a, = % [ f(odx = % [ 1ax = %[x]iiﬁ;‘ -1

3L/4
a, =2r f(x)cos 2n7mdx:2I3L/4 Icos 2nﬂxdx= 2L sin 2nmx =L (sin&l—ﬁ)—(sinzn—”)}
L L L4 L 2nnal L |,,, nr 4 4

1 . bnr . 2nrw 1 . 3nrx . N1
a, = E{(sm T) - (s1nT)} = E{(sm T) —(sin 7)}

Expression for a, is not very pretty and easy to make mistakes with. Write out a table to help with
assignment of coefficients....
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n=1 n=2 n=3 n=4
1( . 3% . 2 1 . 6br . 2z Al 9 L 3m| o 2 b 1270 A
”{(sm 2)—(sm2)}=—7[ 2”{(Slnz)—(sz)}:O Py {(Sln 5 )= (sin 5 )} 3, py {(Sm 5 ) —(sin 2 )}—0
n=>5 n==6 n=7 n=38
1 . 157 . Sm 2 1 .18 .6 1 .21 .7 2 1 . 24 .8
g{(smT) —(sm7)} =5, 67[{(sm 77[) —(sin 2”)} =0 ﬁ{(sm Tﬂ) - (51117”)} = g{(sm Tﬂ-) —(sin 7”)} =0

SO f(x) :%—(Ecosz—ﬂxJ+(icos6_ﬂxj_(icoslo_ﬂxj+‘“
T

7. Half-Range Series

Sometimes we want to find a Fourier series representation of a function which is valid just over some
restricted interval. We could do this in the normal way and then state that the function is only valid over a
specific interval. However, the fact that we can do this allows us to use a clever trick that reduces the
complexity of a problem. We will study this by considering the following example:

Example 4
Consider a guitar string of length L which is being plucked.

/\

(Note on application: If a string was released from this position, finding this 0 L
Fourier series would be a crucial step in determining the displacement of the
string at all subsequent times — see later in course.)

We could, as before, apply the Fourier series to a pretend infinite series of plucked strings and then say
that the expression was only valid between 0 and L.

it e, (e Ty, ol s e

However this series would contain both sine and cosine terms as there is neither even nor odd symmetry,
and so would take ages to solve. There is a much more clever way to proceed....

Note that we are only told the form of the function on the interval [0, L]. All that matters is that the series
corresponds to the given function in the given interval. What happens outside the given interval is
irrelevant. The way to tackle such a problem is to consider an artificial function which coincides with the
given function over the given interval, but extends it and is periodic. Clearly we could do this in an
infinite number of different ways, however in the previous section, we observed that the Fourier series of
odd and even functions are particularly simple. It is therefore sensible to choose an odd or even artificial
function!

If the original function is defined on the range [0, L] then there are always odd and even artificial

functions with period 2L. In this case these look like:

g ’ L
L\/O - 0

These functions are called the odd extension and even extension respectively.

Their corresponding Fourier series are called the half-range sine series and half-range cosine series.

Theory
We saw earlier that for a function with period L the Fourier series is:-

1 < 2nmx . 2nmx 2 2nmx 2L . 2nnx
f(x) =% +nZ=I:an cos 7 +b, s1nT, where a, —ZIO f(x)cos 7 dx, b, = ZIO f(x)sin 7 dx

In this case we have a function of period 2L so the formulae become

1 - nmw . nw 1 L nm 1 L . N
f(x):EaO +Zan COST“'bn sin—=x, where a, _ZI—L f(x)cosde, b, _ZI—L f(x)sdex

n=l
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Remembering also that fb f,(x)dx =2 Lb f.,(x)dx, we get the following results:

. . i 2 (L
Half-range cosine series:  f(x) =%a0 +Zan cos%, where a, = ZL f(x) cos%dx.

n=l

Half-range sine series: f(x)= an sin%, where b, = %J'OL f(x) sin%dx.

Note : The resulting series is only valid over the specified interval!

Example 5
Find a Fourier series which represents the displacement y(x), I d
between x = 0 and L, of the ‘plucked string’ shown. '
o Y4 be

Let us choose to find the half-range sine series.

2xd/L 0<x<L/2
We have y(x)=

2L-x)d/L Lj2<x<L

L L/2
So b, =£J.dxsin m;er( )=— J. dx 2dx in 77Y 2 dx—(L x)sin mrx
L 0 L/2
.. ) . . 8 . mrm
Using integration by parts, it can be shown that the resultis: b, =—— smT for m  odd
Tm
=0 for m even
So for 0 <x <L we have Y(x)—% in 71 ?ﬂz—x—i-L in L @—i- .........
7’ 25 L 49 L

Work out the full solution for yourself. This question is answered in “Phil’s problems”.

8. Further Results

a) Complex Series.
For the waves on strings we need real standing waves. But in some other areas of physics, especially solid
state physics, it is more convenient to consider complex or running waves.
Remember that:
—1i . 1 i —i - l
cos kx = (e"“+e Y, smkx:?(e'“—e y=—
i

2 (eikx _efikX)

The complex form of the Fourier series can be derived by assuming a solution of the

form f(x) = chei"" and then by evaluating the coefficients as in section 3, taking the expression and

n=—w0

multiplying both sides by ¢ and integrating over a period:

27 —imx _ c J.ZH inx _—imx _ C J.zﬁ i(n—m)x
J‘O f(x)e a’x—’Z;Oc”O ee dx—chO e dx

nh=—0

27 .
For n # m the integral vanishes. For n=m the integral gives 2n. Hence ¢, = Py jo f(x)e ™ dx
Vs

Complex Fourier Series for a function of period 21:  f(x)= Y c,e™ where ¢, = zijj” F(x)e ™ dx
T

n=-w

The more general expression can be written as:-

A function f{x) with period L can be expressed as:- f(x) = chez’”"x/ " where ¢, = %J.OL f(x)e ™ dx
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Let’s have a look at an example of complex Fourier series.

Example 6

Find the complex Fourier series for f(x) = x in the range -2 <x < 2 if the repeat period is 4.

1 _ o | 3
c, :Z J;L f(x)e™'*dx and the period is 4. So we can write ¢, = 1 I zzxe a2

Integration by parts ju dv=uv— I vdu withu =xanddv= e ™ *dx sodu =dx and v= ;?e‘m”x/ :

mn
1[-2x 2 toa[-2x 4 ’ X 1 ’
c,=— : e—ﬂmx/z + J_‘e—mnx/de - : e—ﬂmx/Z - e—ﬂmx/Z — : e—/zmx/Z + - e—mnx/Z
4| mn mn L, 4| mn zin , L2mn 7°n S

mn nn man n

C =[__'le—7zin +%e—m’ni|_|:i'eﬂin n 21 . emnjl:__-l(e_mn +em’n)+ 21 . (e—m'n _em'n)

. -1 i I ( ; 1 i <
Since —x-=1 then an—(e ’”"+e’”")+ > 2(e ’”"—e’”")
i i m z°n

It is known that since ¢™ =cosnz +isinnz and e ™ =cosnz —isinnz then ......

l( 4 : : i : 2i 20 . 2i
cosnr :—(e - +e’””) and sinnz :f(e " —e’””) sowe say C, =—COSN7 ———SINNT =—COSNT
2 2i m z°n m

So Cn IECOSﬂﬂ' :ﬁ(_ 1)” and since f(x) _ icne%ﬂnﬂll then f(x) — i &(_ l)nezﬂnx/Z
m m m

n=—o n=-—o

b) Parseval’s Theorem

: : : : 1 < :
Consider again the Fourier series  f(x) = 5 a, + Z a,cosnx+b, sinnx.

n=l

2
Square both sides then integrate over a period: .[02”[ f (x)]zdx = J‘j” {%ao + Zan cosnx + an sin nx} dx
n=1 n=1

The RHS will give both squared terms and cross term. When we integrate, a/l the cross terms will vanish.
All the squares of the cosines and sines integrate to give © (half the period). Hence

2 0
J‘OZH [f(x)]zdx = 27[% + ﬂZ[an2 + bnz]
n=l1

The energy in a vibrating string or an electrical signal is proportional to an integral like J.OZ” [ f (x)]zdx .

Hence Parseval’s theorem tells us that the total energy in a vibrating system is equal to the sum of the

energies in the individual modes. Sinusoidal Wave on a string

Wave power
P versus time ¢

])111'1\; = ,llTO) 2 Az at coordinate x = 0
Taken from PHY 102 a

ave

P =i wl' o’ A°
2

NB, for all MECHANICAL waves, P

o AZy2

ave
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PHY226
Appendix: Orthogonality

At a fundamental mathematical level, the reason the Fourier series works — the reason any periodic
function can be expressed as a sum of sine and cosine functions — is that sines and cosines are orthogonal.

In general, a set of functions u;(x), ux(x), ..., us(x),... is said to be orthogonal on the interval [a, b] if
b 0 n+m )
j u, (xX)u, (x)dx = { (where ¢, 1s a constant).
a c, n=m

Here we will prove that function sinnx, cosmax, etc are orthogonal on the interval [0, 27].

l. I:” sinnxcosmxdx = %Jj” sin(n+m)x—sin(n—m)xdx  [Using sin(a+b)—sin(a—b)=2sinacosb |

2
cos(n— m)x} =0

0

1{ 1
=—|— cos(n+m)x+
2l n+m

2,
Hence J.O sinnxcosmxdx =0 for n # m.

2. ‘[02” sin nxsin mx dx = %J‘OM cos(n—m)x—cos(n+m)xdx [Using cos(a—b)—cos(a+b)=2sinasinb ]

2z

=l{ ! sin(n—m)x — ! sin(n—m)x} =0
2| n—m n—m

0

2
Hence L sinnxsinmxdx =0 for n # m.

3. I:” cosnxcosmxdx = %Jj” cos(n+m)x+cos(n—m)xdx [Usingcos(a—b)+cos(a+b)=2cosacosbh]

27
sin(n — m)x} =0

0

1{ .
=— sin(n +m)x +
2l n+m n—m

27
Hence J.O cosnxcosmxdx =0 for n#m.

For n = m # 0 the integrals becomes:

2z, 1 2r 1 o
1. j s1nnxcosnxdx:—j sin2nxdx=| ——cos2nx| =0
0 240 4n 0

2
2. r” sin’ nx dx =lJ.2” (1-cos2nx)dx = 1 x—Lsin2nx =7
0 2% 2 2n

0

2
3. J.M cosznxdler” (l+cos2nx)a’x:l x+Lsin2nx =z
0 29 2 2

n 0

For n = m = 0 the first two integrals become .fOMde =0 and the third becomes jo i ldx =27

Note
1. Similar results can be proved for function of periodicity L.
2. The results (n # 0) are easy to remember: ALL integrals over sines and cosines over a full period
give zero, unless the integrand is a square in which case the integral is always equal to half the
range of the integral.
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