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Lecture 4:  2nd Order ODE’s  cont. 
INTRO: Hopefully these equations from PHY102 Waves & Quanta are familiar to you….       

 Free Oscillation with damping:      Forced Oscillation with damping: 

            02

2

=++ kx
dt
dxb

dt
xdm       tHkx

dt
dxb

dt
xdm Dωcos02

2

=++  

In this lecture we consider one more common homogeneous equation then two inhomogeneous equations.  

Example 3.  The Damped Harmonic Oscillator   02 2
02

2

=++ x
dt
dx

dt
xd ωγ    

Looking for solutions of the form emt  we obtain the characteristic equation 
02 2

0
2 =++ ωγmm .   

This quadratic has two solutions:  2
0

2 ωγγ −±−=m      Be careful!  There are 
three different cases. 
 

(i) 2
0

2 ωγ >   (over-damping)   

We have two real values for m:   2
0

2
1 ωγγ −+−=m    and     2

0
2

2 ωγγ −−−=m . 

And the general solution is  x(t) = tmtm BeAe 21 + . 
Both m1 and m2 are negative so x(t) is the sum of two exponential decay terms and so 
tends pretty quickly, to zero. The effect of the spring has been made of secondary importance to the huge 
damping, e.g. fire doors. 
 

(ii) 2
0

2 ωγ =   (‘critical damping’)   

The characteristic equation has a double root  m = -γ ,  so the general solution is   x(t) = e-γt [A + Bt]   as 
shown earlier. Here the damping has been reduced a little so the spring can act to change the displacement 
quicker. However the damping is still high enough that the displacement does not pass through the 
equilibrium position, e.g. car suspension – push down on the wheel arch and hope not to see SHM!  
 
(iii) 2

0
2 ωγ <   (under-damping) 

The roots are complex.    Define  22
0

2 γω −=Ω    so   Ω±=− 22
0 γω    and  Ω±=− i2

0
2 ωγ . 

Then the two allowed values of m can be written    Ω+−= im γ1    and Ω−−= im γ2 . 
The general solution can be written     x(t) = e-γt [AeiΩt + Be-iΩt]     
or     x(t) = e-γt [CcosΩt+ DsinΩt]        or       x(t) = Fe-γt cos(Ωt+φ).  See Phil’s Problems Lect3Prob6. 
The solution is the product of a sinusoidal term and an exponential decay term – so represents sinusoidal 
oscillations of decreasing amplitude. E.g. bed springs. 

   
The amplitude will fall to 1/e of its original value after a 

time 
γ

τ 1
= .   

In many physically interesting cases 2
0

2 ωγ << .  In this 
case Ω ∼ ω0 , so  x(t) ≈ Fe-γt cos(ω0t +φ). 

In that time τ the oscillator will have made n oscillations 

where  n = f τ and 
π

ω
2

0=f  hence
πγ

ω
2

0=n .  The ratio 

ω0 / 2γ is called Q, the quality factor. Q is widely used in 
all areas of physics, a higher Q indicating a lower rate of energy dissipation relative to the oscillation 
frequency, so oscillations die more slowly. (see PHY102 topic 1 and PHY221).  
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Inhomogeneous Equations  
We now look at inhomogeneous or forced or driven second order linear ODEs with constant coefficients. 

These are equations of the form   )(2

2

tfcx
dt
dxb

dt
xda =++ . 

 
The two common driven equations which we will discuss are: 

  
Equation 5 has applications in countless different areas of science!  These include mechanical oscillators, 
LCR circuits, optics and lasers, NMR, nuclear physics, Mössbauer effect, pulsars, etc. etc. Equation 4 is 
usually unphysical, but it’s much easier to solve, so we will look at this first! 
 
Revision of Theory   Solution involves four steps: 

1) Find the general solution of the related homogeneous equation   02

2

=++ cx
dt
dxb

dt
xda   (by the 

methods discussed earlier). Call this complementary solution xc(t).  
2) Find any solution of the full equation.  This solution, xp(t), is often called a particular solution or 

particular integral. It is found using an appropriate trial solution. 
e.g.   If    f(t) = t2      try       xp(t) = at2 + bt + c      

 If    f(t) = 5e3t        try xp(t) = ae3t  
 If    f(t) = 5eiωt try xp(t) =aeiωt       
 If    f(t) = sin 2t    try   xp(t) = a cos2t + b sin2t    (or complex version – see below!)       
  If    f(t) = cos wt try xp(t) =Re[aeiωt]  see later for explanation 
 If    f(t) = sin wt try xp(t) =Im[aeiωt]    
       If your trial solution has the correct form, substituting it into the differential equation will yield the  
       values of the constants a, b, c, etc. 
3) The complete general solution is the sum of the two parts above,  x = xc + xp.  
4) The complete general solution contains two constants (in xc). If two boundary conditions are known, 

these should be applied to find the values of the constants.  
 

Example 4.  The Undamped, Driven Oscillator      tFtxtx
dt
d

ω=ω+ cos)()( 2
02

2

    

Step 1   The corresponding homogeneous equation is simply the LHO equation. From the last lecture, 
therefore, we can take, say, tBtAtxc 00 sincos)( ωω += . 
 

Step 2  We need to find the ‘particular integral’ using a trial solution. We should try  xp(t) = a cos ωt + b 
sin ωt.  Substitute this trial solution into the original equation:  

We find (ω0
2 − ω2)acosωt + (ω0

2 − ω2)bsinωt  = Fcosωt.  

Comparing terms we can say that b = 0 and….     (ω0
2 − ω2)a = F 

Hence the trial solution is a solution provided   22
0 ωω −

=
Fa ,      i.e.    tFtxp ω

ωω
cos)( 22

0 −
= . 

 

Step 3  So the complete general solution is  tFtBtAtx ω
ωω

ωω cossincos)( 22
0

00 −
++=   

 
Step 4  Suppose a particle subject to the equation above is known to be at rest at  x = L  at  t = 0.  

Example 4. tFtxtx
dt
d

ω=ω+ cos)()( 2
02

2

   Driven oscillator no damping 

Example 5.  tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++     Driven oscillator with damping 
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This means we have the boundary conditions    x(0) = L    and 0| 0 ==tdt
dx . 

Substitute t = 0 in the general solution given above:  LFAx =
−

++= 22
0

0)0(
ωω

   

Differentiating the general solution, then substituting  t = 0  gives  0 0Bω =  

Hence B = 0 and 22
0 ωω −

−=
FLA  so the solution is: tFtFLtx ω

ωω
ω

ωω
coscos)()( 22

0
022

0 −
+

−
−=  

This can be written as  )cos(cos
)(

cos)( 022
0

0 ttFtLtx ωω
ωω

ω −
−

+= . 

 
A few comments  

1. Note that the solution is clearly not valid for 0ω=ω ! 

2. The ratio 
F
tx )(

 is sometimes called the response of the oscillator. It is a 

function of ω. It is positive for ω < ω0, negative for ω > ω0 .  This means that 
at low frequency the oscillator follows the driving force but at high 
frequencies it is always going in the ‘wrong’ direction. 

Solution using Complex Numbers  
The particular integral of the equation above was easy to find because a trial function of the form xp(t) = a 
cos ωt + b sin ωt worked. In our next equation (a driven oscillator with damping) this trial function would 
also work ... but the algebra gets very messy. It is easier to use complex numbers. To learn the complex 
method we will use it to solve equation 4 again for the particular integral. 

Compare the original equation      tFtxtx
dt
d

ω=ω+ cos)()( 2
02

2

    (A) 

With the equation    tiFetXtX
dt
d ωω =+ )()( 2

02

2

    (B) 

We know    Fcosω t = Re(Feiωt),    so if equation (B) has (complex) solutions X(t) then the solutions of 
equation (A) will be the real part of these: x(t) = Re(X(t)). If the function on the RHS of (A) was sinωt  
then we could use the same approach but at the end take the imaginary part.  
 

i.e. first we solve   tiFetXtX
dt
d ωω =+ )()( 2

02

2

. 

This is easy: we take a trial solution of the form X = Aeiωt.   

Substituting this in gives:  tititi FeeAAe
dt
d ωωω ωωωω =+−=+ )()()( 2

0
22

02

2

  

Hence     
)(

)( 22
0 ωω

ω
−

=
FA      so      tieFtX ω

ωω )(
)( 22

0 −
=  
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Finally last thing we do is take the real part:     x(t) = Re(X(t)) = 
)(

cos
22

0 ωω
ω

−
tF    (as before). 

 

Example 5.  The Damped, Driven Oscillator      tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++    

 
Step 1  The complementary function will be the solution of the damped harmonic oscillator, found at the 
beginning of this lecture. As discussed there, the appropriate form depends on the magnitude of 
γ compared to ω0. However note that in every case, the solution tends to zero as t →∞. It is often called 
the “transient” solution. 
 
Step 2  The particular integral, by contrast, does not die away and is called the “steady state solution”. 
We will find it using the complex method described above. 

 Consider the equation   tiFetFtX
dt

tdXtX
dt
d ωωωγ ==++ cos)()(2)( 2

02

2

. 

Look for solution of form   X = A(ω)eiωt : tititi FeAeiAe
dt
d

dt
d ωωω ωωγωωγ =++−=++ )2()2( 2

0
22

02

2

 

So   
)()2(

)( 2
0

2 ωωωγω
ω

Z
F

i
FA =

++−
= .  Remember to divide by a complex, we write it in form  reiφ. 

Let  φωωωωγω ieZZi )()()2( 2
0

2 ==++−    where 22222
0 4)()( ωγωωω +−=Z  and 22

0

2tan
ωω

γωφ
−

= . 

Then  
)()(

)(
ωω

ω
φ

Z
Fe

Z
FA

i−

==     so  )(

)()(
φωω

φ

ωω
−

−

== titi
i

e
Z

Fe
Z
FeX ,  and now the last thing we do is to 

take the real part of the answer; hence ]
)(

Re[]Re[)( )( φω

ω
−== tie

Z
FXtx  so ( ) cos( )

| ( ) |
Fx t t

Z
ω φ

ω
= − . 

 
(Steps 3 & 4 can then be followed if required.) 
 
In cases where the damping is small, the amplitude has a strong peak at 0ω ω≈  and the quality factor Q is 
again an important indicator.  
 
Closing remarks 
We have focussed on the mathematics of solving generic harmonic oscillator 
equations. By replacing ω, γ, etc. with appropriate constants, you should 
now be able to solve equations for all mechanical oscillators, oscillations in 
electrical LCR circuits, and numerous other oscillators! PHY221 and other 
courses will explore more of the physical significance of the solutions found 
here.   
 
References 
The material of lectures 3&4 is covered very thoroughly, with many real physical examples, 
by French in the course pack p.5-52: 

Undamped, undriven LHO        7-9 
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Undamped, driven LHO: steady state   20-24 
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Damped*, driven LHO: steady state   25-28 

 Further discussion of Q, transients, resonance, etc.   31-42 
 Electrical, optical & nuclear examples   42-52 
[*Note that French uses a damping constant γ  while we have used 2γ] 


