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Ordinary Differential Equations (ODE’s) I 
 
Most of physics involves the solution of differential equations! The solution of ordinary differential 
equations (ODEs) was covered in PHY112. ‘Ordinary’ means that all functions are of only one variable. 
We will revise the theory and explore some examples, especially harmonic oscillators. Later lectures will 
address the solution of partial differential equations featuring multiple variables.  
 

First Order ODEs (i.e. 1 variable and no higher than 
dt
dx  terms) 

Revision of Theory 
You should be aware of two possible methods for solving 1st order ODEs. Which method you use 
depends on the equation you are trying to solve.  

1. Some equations can be solved by the method of separation of the variables: rearrange the 
equation so that each side involves only one variable, then integrate both sides.  

2. The method of trial solution may be used.  
 

The general solution of a 1st order equation will contain one arbitrary constant; the value of the constant 
is determined by the boundary conditions, yielding a particular solution. 

 
 

Example: Radioactive Decay 
Consider a sample of radioactive material. Let N  be the number of undecayed atoms at time t.  

At any time, the rate at which atoms decay is proportional to N.    I.e. )()( tN
dt

tdN
λ−=   where λ is the 

decay constant.  Given that N = N0 at t = 0, find an expression for N at later times.  
 
Method 1  

a) dt
N

dN
λ−=    can be rearranged and both sides integrated: dN dt

N
λ= −∫ ∫ . 

Performing these (indefinite) integrals we obtain   ln N t cλ= − +     (remember the constant!) 
Hence t c t c tN e e e Aeλ λ λ− + − −= = =  where  A = ec . 
Using the boundary condition that at t = 0, N = N0, we find  A = N0.   Hence  N(t) = N0 e−λt.    
 
b) Alternatively the boundary condition information can be entered as the limits of definite integrals: 

     ∫∫ −=
tN

N
dt

N
dN

00

λ      giving   0
0

ln ln ln NN N t
N

λ− = = −   ,  hence  N(t) = N0 e−λt. 

 
Method 2   
We may guess that the equation has a solution of the form ( ) mtN t Ae= .   

Substituting this trial solution into the equation gives ( ) ( ) ( )dN t mN t N t
dt

λ= = − .   

So it is a solution if m = - λ.       i.e. the general solution is ( ) tN t Ae λ−=  . 
Applying the boundary condition we find the solution as before. 
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Example 1: The growth of an ant colony is proportional to the number of ants. If at t = 0 days there are 
only 2 ants, but after 20 days there are 15 ants, what is the differential equation and what is its solution? 

 

The differential equation is KP
dt
dP

=  where the population at time t is P(t). 

Kdt
P

dP
=    and then integrate to get cKtP +=ln    otherwise written as )exp()exp( KtAcKtP =+=  

We are told that at t = 0,   P = 2   so ….  2 = A  

We are also told that at 20 days P =15 so  ….. 15 = 2 exp (20K), so K = 0.1   

The solution is therefore )1.0exp(2 tP =  
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Second Order ODEs  
We will restrict our study of 2nd order ODEs to that of linear equations with constant coefficients 

These are equations of the form   )(2

2

tfcx
dt
dxb

dt
xda =++ . 

We look first at equations with  f(t) = 0,  called  homogeneous  or  unforced. 
Next lecture we look at equations with  f(t) ≠ 0,  called  inhomogeneous  or  forced  or  driven. 
[Note: In this course we concentrate on the mathematics; the physics is further explored in PHY221.] 

 
 
Homogeneous Equations – Simplest examples with no friction 

Two forms which occur very commonly in physics are: 

1. 
2

2
02 ( ) ( )d x t x t

dt
ω= −        Linear harmonic oscillator (LHO)    (Equivalently  0)()( 2

02

2

=ω+ txtx
dt
d .) 

This equation occurs almost everywhere! E.g. all problems concerning waves (strings, light, etc.); small 
oscillations e.g. lattice vibrations in solids; LC electric circuits. 

2. )()( 2
2

2

txtx
dt
d

α=      Unstable equilibrium. Less common occurrences as most systems in  

unstable equilibrium collapse…..e.g. pencil balancing on its point. 

 

Homogeneous Equations - Revision of Theory 

We have the equation   02

2

=++ cx
dt
dxb

dt
xda . 

Looking for trial solutions of the form mtx e=  leads to the or auxiliary equation 
        am2 + bm + c = 0. 
Find the roots of this equation. 

- For real, distinct roots, m1  and m2, the general solution is  
tmtm BeAex 21 +=    

- For real, repeated roots, m,  the general solution is   mteBAtx )( +=  

- For complex roots m βα i±= ,  the general solution may be written titi BeAex )()( βαβα −+ +=  

)( titit BeAee ββα −+= or equivalent form such as )][cos()cossin( φβββ αα +=+= tEetDtCex tt . 

NB. Proofs of these equivalent relationships can be found in Phil’s Problems.  
 
Note that the general solution contains two arbitrary constants. Two boundary conditions must 
therefore be applied to find a particular solution.  
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Example 1.  The Linear Harmonic Oscillator 

Find the solution of  0)()( 2
02

2

=ω+ txtx
dt
d    ?  

Substituting mtx e=   yields the auxilliary equation  02
0

2 =ω+m  .  Hence    0
2
0

2 , ωω imm ±=−= . 
We have the case of complex roots. In this case, the roots are pure imaginary. The general solution can be 
written in various different (but equivalent) forms: 
   (a)  titi BeAetx 00)( ωω −+= ,  (b)  tDtCtx 00 cossin)( ωω += ,     (c)  )][cos( 0 φω += tEx   
 
We use whichever form of the solution is the most convenient, e.g. (b) for a standing wave and (a) for a 
travelling wave and (c) for a real oscillating wave where the total amplitude is important.   
 
Applying Boundary Conditions  

If the particle starts at the origin with velocity V,   i.e.   x(0) = 0  and  0
( ) |t

dx t V
dt = = .   Apply boundaries? 

In this case a trig form is more familiar. We could use the form tDtCtx 00 cossin)( ωω +=        (*) 

Then the first condition gives x(0) = 0 = D + 0  hence D = 0.   

To use the 2nd condition we differentiate (*) then substitute t = 0, giving  V = ω0Ccos(0) = ω0C. 

Hence in this case D = 0 and 
0ω

VC =  so the solution is 0
0

( ) sinVx t tω
ω

= . 

 
 
Example 2.  Unstable Equilibrium 

Find the solution of  )()( 2
2

2

txtx
dt
d

α=    ?   

The auxillary equation is   22 α=m       so     α±=m .  Hence the general solution is  tt BeAetx α−α +=)( .   
  

 
 
Applying Boundary Conditions  

Suppose    x(0) = L      and     0|)(
0 ==tdt

tdx .    Apply the boundary conditions?  

The general solution is  tt BeAetx αα −+=)( .  So first condition gives x(0) =  L  =  A  +  B. 

The second condition gives 0|)(
0 ==tdt

tdx  = BABeAe tt αααα αα −=− − .    So A – B = 0.    So A = B = 
2
L . 

The solution is tLeeLtx tt ααα cosh)(
2

)( =+= − . 

 
 

Compare the solutions of equations (1) and (2). They have very different physical characteristics! 

o Solutions of (1) oscillate for ever. 
o Solutions of (2) grow to infinity as t increases. 


