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EXPONENTIALS, FUNCTIONS AND COMPLEX NUMBERS 
 

A key observation looking at sin(x) and cos(x) below is that cos(x) is symmetrical in the Y-axis whereas 
sin(x) is not. This can be written mathematically as:- 

cos(x) = cos(-x)      and   sin(x) = - sin(-x)         These relationships are crucial in this course 

 
 
We can combine exponentials into the hyberbolic functions: 

1cosh
2

x xx e eα αα −⎡ ⎤= +⎣ ⎦       is an even function:   cosh cosh( )x xα α= −   

and   1sinh
2

x xx e eα αα −⎡ ⎤= −⎣ ⎦        is an odd function:   sinh sinh( )x xα α= − − . 

 
 
Using the definition of the derivative it is easy to show that: 

cosh 1 sinh
2 2

x x
x xd x de de e e x

dx dx dx

α α
α αα α α α

−
−⎡ ⎤

⎡ ⎤= + = − =⎢ ⎥ ⎣ ⎦
⎣ ⎦

  and   sinh coshd x x
dx

α α α= . 

Exponentials are powers and so they satisfy:  ea+b = eaeb and  e-a = 1 / ea. 
 
Natural logarithms are defined by   lnxy e x y= = .   

We also have that ln y1 + ln y2 = ln (y1y2) and ln y1 – ln y2 = ln (y1/y2) 
 
We can relate natural logs to those to base 10:  
Define  10logw y= .  This expression means that 10wy = .   

Take natural logs of both sides:  ( ) ( ) lnln ln 10 ln 10
ln(10)

w yy w w= = =       or       ln(10)wy e= . 
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Complex Numbers 
 

Let z = a + ib      where  i2 = - 1         (Note: Physicists usually use i, engineers often use  j.)  
To represent this number on an Argand diagram, plot the point with 
Cartesian coordinates (a, b). i.e. real numbers run along the x axis and 
imaginary numbers along the y axis. 

                 
The complex conjugate is    z* = a - ib 
(Note: physicists always denote complex conjugates by z*  not z .) 
 
By Pythagoras, the length OZ is ( a2 + b2 )1/2.     
Note that this length is also equal to (z z*)1/2,  since    z z* = 2 2 2( )( ) ( )( )a ib a ib a ib ib a b+ − = + − = + .  
We also write  a2 + b2 = (z z*) = |z|2  where *z zz=   and is called the modulus of z.     
 
Example 1:    Find the modulus of |(2 + 3i)| ? 

|(2 + 3i)|2 = (2 + 3i)(2 – 3i)   =   4  -  9i2  =   4  +  9  =  13.   So |(2 + 3i)| = √13. 
 
Polar form 
We can also write   z = r e iφ  = r (cosφ + i sinφ),     0 < φ < 2π      
where r = is again called the modulus, φ  is called the argument or phase.   
For a proof of this relationship see Lecture 2, problem 2 in Phil’s Problems. 

Then  z* = r e -iφ         
So    zz*  = r2 eiφ e-iφ  = r2       since   eiφ e-iφ  =ei(φ−φ) = e0 = 1     
    
Clearly   a = rcos φ ,    b = rsin φ,     and     r = 22 ba +  = |z|. 
 

Note that |z| and zz* = |z|2, are always real, whereas  z2 = a2+ 2iab - b2 = r2e2iφ  ≠ |z|2  is usually complex.  
In physics we always need to get real answers, hence in quantum mechanics etc. one takes |ψ|2 not  ψ2.   
(In optics and E&M you may sometimes take the real part to get your answer.) 
 
 

Changing between the forms  z = a + ib  and  z = reiφ 
You are strongly advised to first plot the number on an Argand diagram. Without this it is easy to make 
mistakes about minus signs and angles, etc.!   

• Given  z = a + ib, to find the form  z = reiφ  :  Find r using 2 2r a b= + .   

 Find φ  using tan b
a

φ =  and specifying the quadrant, or read the angle off the Argand diagram. 

• Given  z = reiφ,  to find the form  z = a + ib  is easier:  a = rcosφ   and b = rsinφ . 
 
Why do we need both forms?   
It is easier to add and subtract complex numbers in the form z = a + ib  but easier to multiply, divide, take 
powers and roots when they are in the form z=reiφ.  In physics we almost always use the form z = reiφ . 
 
Addition and Subtraction 
If   z a ib= +    and    w c id= +    then   ( ) ( )z w a c i b d+ = + + +    and   ( ) ( )z w a c i b d− = − + − . 
 
Multiplication and Division 
For this we always use the form  z = r e iφ . 
Let 1

1 1
iz r e φ=   and  2

2 2
iz r e φ=   then  1 2 1 2( )

1 2 1 2 1 2
i i iz z r e r e r r eφ φ φ φ+= =     

 i.e. multiply the moduli and add the arguments (phases). 
Similarly for division:    1 2( )

1 2 1 2( / ) ( / ) iz z r r e φ φ−= ,    i.e. we divide the moduli and subtract the arguments. 

b 

 -b 

a  O 

 z 

 z*

φ 
 r 

b 

a  O 

 z 
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Example 2:     Express  (1 + i) ÷ (1 + 1.73i) in polar coordinates? 

We convert Cartesian to polar: For (1 + i)   tanθ = 1/1 so θ = π/4.  For (1 + 1.73i) tan∆ = 1.73/1 so ∆ = π/3 
For (1 +i) the value of r2 = 12 + 12 so r = √2.   For (1 + 1.73i) the value of r2 = 12 + (1.73)2 so r = 2. 
So we can write (1 + i) ÷ (1 + 1.73i) = (√2)eiπ/4 ÷ 2eiπ/3 = 0.707e iπ/4- iπ/3 =  0.707e -iπ/12 . 
 
Powers and Roots 
Again we always use the polar form.  For a real number power it is straightforward: n n inz r e φ= .   
   i.e. we take the modulus to the nth power and multiply the argument (or phase) by n. 
 

Roots are trickier.  We defined φ to lie in the region  0 < φ < 2π.  But this will need to be extended if we 
want to get all the roots of a complex number. We define ( 2 )i pz re φ π+=  where p is an integer.   

To find an nth root, we need to take n distinct values of p:  p = 0,  p = 1, p = 2, …,  p = n -1.   
Then there are n distinct roots  1 1 ( 2 )n n i p nz r e φ π+= . 
 
Example : I remember things better when I do them in easy small steps..so…if z = 9 eiπ/3  what is z½? 

Step 1: write down z in polars with the 2πp bit added on to the argument.   z = 9 ei ( π/3 + 2πp )  

Step 2:  say how many values of p you’ll need and write out the rooted expression …..   here n = 2 so I’ll 
need 2 values of p; p = 0 and p = 1.    z½ = √9 ei ( π/3 + 2πp )/2 

Step 3: Work it out for each value of p….z½ = 3 ei ( π/3  )/2   =  3 ei ( π/6 )      for  p = 0 

        z½ = 3 ei ( π/3 + 2π )/2  =  3 ei ( π/6 + π ) for p = 1  

There are your answers but remember that e iφ  =  (cosφ + i sinφ)  so    e iπ = (cosπ + i sinπ) = −1. 

It’s therefore better to write z½  =  3 ei ( π/6 + π )  = 3 ei π/6 (eiπ) =  -3 ei π/6 for p =1,   and 3 ei ( π/6 )  for  p = 0 
 
Example 3:  If z = 27 eiπ/2  what is z⅓? 

Step 1: write down z in polars with the 2πp bit added on to the argument.   z = 27 ei ( π/2 + 2πp )  

Step 2:  say how many values of p you’ll need and write out the rooted expression …..   here n = 3 so I’ll 
need 3 values of p;     p = 0, p = 1, and p =2.         z⅓ = 3√27 ei ( π/2 + 2πp )/3 

Step 3: Work it out for each value of p….z½ = 3 ei ( π/2  )/3   =  3 ei ( π/6 )      for  p = 0 

        z½ = 3 ei ( π/2 + 2π )/3   =  3 ei ( π/6 + 2π/3 ) for p = 1  

        z½ = 3 ei ( π/2 + 4π )/3   =  3 ei ( π/6 + 4π/3 ) for p = 2  

So the answers are 3 ei ( π/6 )  and  3 ei ( π/6 + 2π/3 )  and  3 ei ( π/6 + 4π/3 ) 
 
 
Exponentials and Trigonometric functions 
Remember     kxikxeikx sincos +=  ;          cos sinikxe kx i kx− = −  

Rearranging gives 1 1cos ( ); sin ( )
2 2

ikx ikx ikx ikxkx e e kx e e
i

− −= + = −    

This is a key observation…remember this. 
 
Differentiation of a Complex Exponential 

We know  kx kxd e ke
dx

= .   Since i is just a constant, we similarly have   ikx ikxd e ike
dx

=  

Note that is much nicer to differentiate exponentials than sines and cosines because we get exactly 
the same function as we started with, just multiplied by a constant.   


