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Lecture 18:  Spherical Polar Coordinates, continued 
 
3.  2∇  in Spherical Polars: Spherical Solutions 

As given on the data sheet,   
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We’ll look first at problems in which the solutions are known to be ‘spherically symmetric’. That is, the 
solutions depend on r, but have no angular dependence. They are functions of r but not of θ or φ.   
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(a) The Laplace Equation   ∇2V(r) = 0. 

Exercise   Find spherically symmetric solutions of Laplace’s Equation  ∇2V(r) = 0. 
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In this case we can actually find V(r) directly by rearranging and integrating, in steps. 
 

Multiplying both sides by r2 gives 0)(2 =⎟
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Integrate both sides again and we get the general solution:     B
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Application 

In electrostatics we want a potential which vanishes at ∞, so set  B = 0, then  
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This is the standard Coulomb potential from a point charge at the origin:  
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We have demonstrated not only that the Coulomb potential satisfies Laplace’s equation but that this is the 
only spherically symmetric solution. 
 
(b) The Wave Equation 

In 3D the wave equation is  2
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Let’s only look for spherically symmetric solutions Ψ(r,t), so the equation can be written 
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As in lecture 13 we look for solutions of the form  ( , ) ( ) ( )r t R r T tΨ = , substitute this back in, and then 
separate the variables.  
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Each side of the equation must equal a constant, and we want oscillating solutions so we choose a 
negative constant. In order to help the maths let’s set the constant as ( )2cω− :  
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The equation for  T(t)  is easy to solve.  )()()( 2
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Now we need to solve     )()()(1 2
2

2
2 rRkrR

cdr
rdRr

dr
d

r
−=⎟

⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ ω     (*)     where    

2
2

2k
c
ω

= . 

Equations like this occur frequently. There is a standard trick which is to define ( )( ) u rR r
r

= , solve for 

u(r) and thus find R(r).   
 

Start by differentiating R(r) with respect to r  using the product rule.          2
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Multiply both sides by r2  gives      )()(2 ru
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Now differentiate, again using the product rule.     2
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So equation (*) becomes:   
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Thus we have solutions of the form: 
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For waves moving out from the origin 
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For waves moving in towards the origin 
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These are spherical waves moving in and out from the origin.   
Note the factor of  1/r.  Intensity is related to amplitude squared. Our solution gives |Ψ(r, t)|2 = A2/ r2.   
This is the well known inverse square law. 
 

Many other spherical equations and problems (e.g. heat flow in a sphere) can be solved in a similar way. 


