Lecture 18: Spherical Polar Coordinates, continued

3. ∇^2 in Spherical Polars: Spherical Solutions

As given on the data sheet,
$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

We'll look first at problems in which the solutions are known to be '*spherically symmetric*'. That is, the solutions depend on *r*, but have no angular dependence. They are functions of *r* but not of θ or ϕ .

For example if F = F(r) then $\nabla^2 F(r) = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} F(r) \right).$

(a) The Laplace Equation $\nabla^2 V(r) = 0$.

Exercise Find spherically symmetric solutions of Laplace's Equation $\nabla^2 V(r) = 0$.

We have $\nabla^2 V(r) = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} V(r) \right) = 0.$

In this case we can actually find V(r) directly by rearranging and integrating, in steps.

Multiplying both sides by r^2 gives $\frac{d}{dr}\left(r^2\frac{d}{dr}V(r)\right) = 0$. Integrating both sides gives $r^2\frac{d}{dr}V(r) = A$ where A is a constant. This rearranges to $\frac{d}{dr}V(r) = \frac{A}{r^2}$. Integrate both sides again and we get the general solution: $V(r) = -\frac{A}{r} + B$.

Application

In electrostatics we want a potential which vanishes at ∞ , so set B = 0, then $V(r) = -\frac{A}{r}$.

This is the standard Coulomb potential from a point charge at the origin: $V(r) = \frac{Q}{4\pi\varepsilon_0 r}$, with $A = \frac{-Q}{4\pi\varepsilon_0}$.

We have demonstrated not only that the Coulomb potential satisfies Laplace's equation but that this is the *only* spherically symmetric solution.

(b) The Wave Equation

In 3D the wave equation is $\nabla^2 \Psi = \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2}$.

Let's only look for spherically symmetric solutions $\Psi(r,t)$, so the equation can be written

$$\nabla^{2}\Psi(r,t) = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \Psi(r,t)}{\partial r} \right) = \frac{1}{c^{2}} \frac{\partial^{2} \Psi(r,t)}{\partial t^{2}}$$

As in lecture 13 we look for solutions of the form $\Psi(r,t) = R(r)T(t)$, substitute this back in, and then separate the variables.

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{T(t)dR(r)}{dr}\right) = \frac{1}{c^2}\frac{R(r)d^2T(t)}{dt^2} \quad \text{gives} \quad \frac{1}{R(r)r^2}\frac{d}{dr}\left(r^2\frac{dR(r)}{dr}\right) = \frac{1}{c^2T(t)}\frac{d^2T(t)}{dt^2}$$

Each side of the equation must equal a constant, and we want oscillating solutions so we choose a negative constant. In order to help the maths let's set the constant as $-(\omega/c)^2$:

$$\frac{1}{R(r)r^2}\frac{d}{dr}\left(r^2\frac{dR(r)}{dr}\right) = \frac{1}{c^2T(t)}\frac{d^2T(t)}{dt^2} = -\left(\frac{\omega}{c}\right)^2$$

The equation for T(t) is easy to solve. $\frac{d^2 T(t)}{dt^2} = -c^2 T(t) \left(\frac{\omega}{c}\right)^2 = -\omega^2 T(t)$ giving $T(t) \sim e^{\pm i\omega t}$.

Now we need to solve
$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR(r)}{dr} \right) = -\left(\frac{\omega}{c}\right)^2 R(r) = -k^2 R(r)$$
 (*) where $k^2 = \frac{\omega^2}{c^2}$.

Equations like this occur frequently. There is a standard trick which is to define $R(r) = \frac{u(r)}{r}$, solve for u(r) and thus find R(r).

Start by differentiating R(r) with respect to r using the product rule.

$$\frac{dR}{dr} = \frac{1}{r}\frac{du(r)}{dr} - u(r)\frac{1}{r^2}$$

Multiply both sides by r^2 gives $r^2 \frac{dR}{dr} = r \frac{du(r)}{dr} - u(r)$

Now differentiate, again using the product rule.

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = r\frac{d^2u(r)}{dr^2} + \frac{du(r)}{dr} - \frac{du(r)}{dr} = r\frac{d^2u(r)}{dr^2}$$

Therefore
$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR(r)}{dr} \right) = \frac{1}{r} \frac{d^2 u(r)}{dr^2}.$$

So equation (*) becomes: $\frac{1}{r} \frac{d^2 u(r)}{dr^2} = -k^2 \frac{u(r)}{r}$. The factors of *r* cancel, giving $\frac{d^2 u(r)}{dr^2} = -k^2 u(r)$.

Thus we have solutions of the form:

$$u(r) = Ae^{ikr} + Be^{-ikr} \qquad R(r) = \frac{Ae^{ikr}}{r} + \frac{Be^{-ikr}}{r} \qquad \Psi(r,t) = R(r)T(t) = \frac{\left(Ae^{ikr} + Be^{-ikr}\right)}{r}e^{i\omega t}$$

For waves moving out from the origin $\Psi(r,t) = \frac{Ae^{ikr}e^{i\omega t}}{r} = \frac{Ae^{i(kr+\omega t)}}{r}$

For waves moving in towards the origin $\Psi(r,t) = \frac{Be^{-ikr}e^{i\omega t}}{r} = \frac{Be^{-i(kr-\omega t)}}{r}$

These are spherical waves moving in and out from the origin.

Note the factor of 1/r. Intensity is related to amplitude squared. Our solution gives $|\Psi(r, t)|^2 = A^2/r^2$. This is the well known inverse square law.

Many other spherical equations and problems (e.g. heat flow in a sphere) can be solved in a similar way.

Phil Lightfoot 2008/9

Lecture 18 - Page 2 of 2