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Lecture 17: 3D Coordinate Systems  
References: Course Pack p.121-123, 131-146. 

 

3D Cartesian Coordinates 

We can describe all space using coordinates (x, y, z), each variable ranging from -∞ to +∞. 
 

1.  PDEs in 3D Cartesian Coordinates 

Consider the wave equation. In one dimensional space we had 
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This can be generalised to 2D (see Course Pack p.111-117) and 3D.   

In 3D the wave equation becomes  
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which may be written in shorthand as   
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Let us look for a solution of the form ( , , , ) ( ) ( ) ( ) ( )x y z t X x Y y Z z T tΨ = , i.e. we try to separate the 
variables, as done in 1D.  Differentiating gives  
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Substituting these into the PDE then dividing through by ( , , , ) ( ) ( ) ( ) ( )x y z t X x Y y Z z T tΨ = , we get        

          
2 2 2 2

2 2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
( ) ( ) ( ) ( )

d X x d Y y d Z z d T t
X x dx Y y dy Z z dz c T t dt

+ + = .     (*) 
 

Each term in this expression is a function of only one variable. In order for the equation to hold for all x, 
y, z and t, each term must equal a constant. We want a wave solution to the wave equation, i.e. harmonic 
terms, so we choose each term to equal a negative constant. We let 
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Comparing with equation (*) we see that the constants, ω, kx, ky, kz  are related by  
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Each of the ODEs above has the normal harmonic solutions, which we can write in terms of sines and 
cosines below. (The bracketed layout simply means that each variable can be represented either by sine or 
cosine depending on the boundary conditions and must not be confused with matrices). 
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Giving special solutions of the form 
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Or sometimes it is more convenient to use complex exponentials,  
        tizikyikxik etTezZeyYexX zyx ω±±±± ≈≈≈≈ )(,)(,)(,)(  
Then we get special solutions such as 
        )exp()exp(),,,( k.ritiAzikyikxiktiAtzyx zyx −=−−−=Ψ ωω       where k = kxi + kyj + kzk.  
 

As we might have expected, the solutions are plane waves with wavevector k (which is also the direction 
of travel of the wave) and frequency ω = ck. 
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A general solution can then be written as a sum over special solutions, and applying boundary conditions 
will determine which terms contribute and the allowed values of kx, etc. 

For example, suppose we have a box with dimensions L1, L2, L3 in the x, y, z  directions respectively and 
know that Ψ must vanish at the walls. Then the special solutions will be:  
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So each special solution, or ‘mode’ will be characterized by three integers, n1, n2, n3. 
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An important question which arises in various areas of physics is the question of how many different 
modes (i.e. unique combinations of integers n1, n2, n3) exist in a given frequency range, or in the 
frequency interval  ω  to  ω + dω?  The answer is central to the derivation of Planck’s Law for blackbody 
radiation, the Debye theory of heat capacities of solids, and various other situations.  
 
2.  Integrals in 3D Cartesian Coordinates   
We have dV = dx dy dz,  and must perform a triple integral over x, y and z.  Normally we will only choose 
to work in Cartesian coordinates if the region over which we are to integrate is cuboid or comprises all 
space. Integrating over spherical regions, for example, is very nasty in Cartesian coordinates! 
 

Example 

Find the 3D Fourier transform, F(k)= ∫∫∫
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The integral is just the product of three 1D integrals, and is thus easily evaluated: 
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This is therefore a product of three sinc functions,  i.e. )()sin( aka
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So doing this for all three components we get: 
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Integrals of this sort are encountered in condensed matter physics in crystals with rectangular lattices.   
 
 

3D Spherical Polar Coordinates 
 
1.  Spherical Polar Coordinates: Revision    
Spherical polars are the coordinate system of choice in almost all 3D problems. This is because most 3D  
objects are shaped more like spheres than cubes, e.g. atoms, nuclei, planets, etc. 
And many potentials (Coulomb, gravitational, etc.) depend on  |r| = 2 2 2x y z+ + .  
Physicists define r, θ, φ  as shown in the figure. They are related to Cartesian  
coordinates by sin cos , sin sin , cosx r y r z rθ φ θ φ θ= = = .  
 
2.  3D Integrals in Spherical Polars 
The volume element is   2 sindV r drd dθ θ φ=    (given on data sheet). 
To cover over all space, we take   .20,0,0 πφπθ <≤<≤∞<≤ r  
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Exercise 1   Show by integration in spherical coordinates that a sphere of radius R has volume 4πR3/3.  
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Exercise 2   Find the Fourier transform of a screened Coulomb potential,  
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[This exercise is relevant to determining the scattering of electrons by a nucleus. The screening comes 
from the electrons bound in the atom. You will meet integrals like this in the Y3 nuclear physics module.]  
 

As in lecture 17 we have the 3D Fourier transform F(k)= ∫∫∫
spaceall

2/3)2(
1

π
f(r)e -ik.rdV .   

In this case f(r) = U(r) is a function only of the magnitude of r and not its direction and so has perfect 
radial symmetry. Again the volume element is   2 sindV r drd dθ θ φ=    (given on data sheet). 

We therefore have     F(k) = ∫∫∫
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There is a standard ‘trick’ which is to chose the direction of k to be parallel to the polar (z) axis for the 
integral. Then k.r becomes krcosθ. Now clearly the whole integral is a function only of the magnitude of 
k, not its direction, i.e. F(k) becomes F(k):   
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The integral over φ is trivial: it just gives a factor of 2π.  
But note that the factor  e-ikrcosθ  involves r and θ. Which integral should we do next? The presence of the 
sinθ  together with the e-ikrcosθ  makes integration by substitution over θ  the obvious choice: 

i.e. let     θθθ dikrdAsoikrA sincos −==    Rewrite ∫∫ −− −=
θ

θθθ θ

sin
sinsin cos

ikr
dAede Aikr   

So        [ ] ( ) )(sinc2sin2sin2111sin
0

0
coscos kr

kr
krkri

ikr
ee

ikr
e

ikr
de ikrikrikrikr ===−== −−−∫

π
πθθ θθ  

We are then left with the integral over r: 
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This type of integral was met earlier in the tutorial question exercises on Fourier transforms. The trick is 
to write the sine in terms of complex exponentials:       
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This gives the final result:     
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