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Lecture 12: Convolution Integrals 
References  Jordan & Smith 27.7, Boas Ch.15.4, Kreyszig 11.9. 
Web site http://www.jhu.edu/~signals/ : go to ‘The joy of convolutions’ 
 
1. Convolution in measurements 
Assume we have an absolutely sharp line or image. Our measuring system will always render a signal that 
is ‘instrumentally limited’; this is often called the ‘resolution function’. 
 
 
 
 
 true signal                                                 what we detect 
 

Now suppose we have a composite signal.  Every bit of it will give rise to a broad line as above. 

                                                               
              true signal                all three lines broaden           what we detect   
    

If the true signal is itself a broad line then what we detect will be a convolution of the signal with the 
resolution function: 

                                                          
              true signal, f               resolution function, g   what we detect, c 
 

We see that the convolution is broader then either of the starting functions. Convolutions are involved in 
almost all measurements. If the resolution function g(t) is similar to the true signal f(t), the output 
function c(t) can effectively mask the true signal. Convolutions are best explored using the jhu website: 
http://www.jhu.edu/~signals/convolve/index.html . The figure below has been adapted from the website. 
 
2. Theory 
The actual way that the functions combine is by definition convoluted. The process is as follows:- 

1. Let both functions be given in terms of x. 
2. Reflect the true signal function: f(x)→f( − x). 
3. Add an offset, u, which allows f(u − x) to 
move along the x-axis. 
4. Start u at -∞ and move to +∞. Where the two 
functions intersect, find the product of both 
functions.  
5. For each value of u take the integral of this 
product, effectively measuring the area, 
recording this as c(x). The resulting waveform 
is the convolution of functions f and g.  
 
A convolution function is therefore defined by 

    ∫
∞

∞−
−=∗= dxxugxfgfc )()( .  

 
 

This process can only really be performed 
using computers.  

∫
∞

∞−
−=∗= dxxugxfgfc )()(
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3. Deconvolution 
We have a problem! We can measure the resolution function (by studying what we believe to be a point 
source or a sharp line. We can measure the convolution. What we want to know is the true signal! This 
happens so often that there is a word for it – we want to ‘deconvolve’ our signal. 

There is however an important result called the ‘Convolution Theorem’ which allows us to gain an insight 
into the convolution process.  Let the Fourier transform of the convolution be C(k).  Then the convolution 
theorem states that:- 

  ( ) 2 ( ) ( )C k F k G kπ= .   

 i.e. the FT of a convolution is the product of the FTs of the original functions. 
 
We therefore find the FT of the observed signal, c(x), and of the resolution function, g(x), and use the 
result that that ( ) 2 ( ) ( )C k F k G kπ=   in order to find f(x).   

We have ( )( )
( ) 2
C kF k

G k π
= .  So taking the inverse transform, ∫

∞

∞−

= dk
kG
kCexf ikx

)(
)(

2
1)(
π

. 

 
This is not easy and we need lots of signal processing tricks to do it.  But it can be and is done in state of 
the art experiments and experimental observations. 
 
4. Application to Optics 

There is a particular use of the convolution theorem here. We have said (and it will be proved in 
PHY227) that the far field (Fraunhofer) diffraction pattern is the modulus squared of the Fourier 
transform of the scattering function. If the scattering function is a convolution of two functions then the 
observed scattering will be the product of the scatterings expected from each of the two functions. Here 
we convolve a top hat function with 2 delta functions so as to yield the characteristic equation 
representative of light intensity produced from infinitely narrow slits.  
 
Example: Double slits 
Consider two delta functions convolved with the single slit ‘top hat’ function: 
 
 
 
    single ‘top hat’ function         two delta functions          convolution   
        axaxf <<−= 1)(                )()()( dxdxxg −++= δδ             ( ) 1c x =  for |x-d|<a and |x+d|<a 
 
Let us find the Fourier transforms of f and g, and their modulus squared.  
From earlier, we know that the FT of a top hat function is a sinc function: 

k
kakF sin

2
2)(
π

=    so   2

2
2 sin2)(

k
kakF

π
=  

For the two delta functions we have 

kdeedxedxdxkG ikdikdikx cos
2
2][

2
1)]()([

2
1)(

ππ
δδ

π
=+=−++= −−∞

∞−∫ .    So  kdkG 22 cos2|)(|
π

= .   

These are the familiar cos2  fringes – as we expect for two ‘infinitely narrow’ slits. 
 

The diffraction pattern observed for the double slits will be the modulus squared of the Fourier transform 
of the whole diffracting aperture, i.e. the convolution of the delta functions with the top hat function.  

Hence    kd
k

kakGkFkC 2
2

2

2
222 cossin4)()(2)(

π
π ==  

– We see cos2 fringes modulated by a sinc2 envelope as expected. 
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                            (a) Double slits, separation d,infinitely narrow 

 

 

 

                             (b) A single slit of finite width a 
  

 

 

                                        (c) Double slits of separation d, width a 
 
 
 

 
5.  Convolving Two Gaussians 

Here we prove a result about the convolution of two Gaussians with widths related to a and b.  Doing 
convolution integrals can be difficult but multiplying two FT’s is easy. 
 

Earlier we found that Gaussian
2 / 2( )

2
axaf x e

π
−=  has a FT which is also a Gaussian 

2

21( )
2

k
aF k e

π

−
= . 

Let us now consider the convolution of two Gaussians   22

2
)( ax

a eaxf −=
π

  and  22

2
)( bx

b ebxf −=
π

. 

From before we know that  
2

21( )
2

k
a

aF k e
π

−
=   and  

2

21( )
2

k
b

bG k e
π

−
= . 

Hence we can immediately write down C(k):  
2 2 2 21 1( )

2 2 2 21 1 1 1( ) 2 ( ) ( ) 2
2 2 2 2

k k k k
a b a b

a bC k F k G k e e e eπ π
π π π π

− − − + −
∆= = = =    where 1 1 1

a b
= +

∆
.    

This is the just the FT of a single Gaussian 
2 / 2( ) xc x e

π
−∆∆

=  characterised by ∆.  

 
This is an important result: we have shown that the convolution of two Gaussians characterised by a and 
b is also a Gaussian and is characterised by  ∆. The value of ∆ is dominated by whichever is the smaller 
of a or b, and is always smaller then either of them. Since we found that the width of the Gaussian f(x) is  

a8  in lecture 9, it is the widest Gaussian that dominates, and the convolution of two Gaussians is 
always wider than either of the two starting Gaussians.  From our diagrams we should have been 
expecting this. 

Depending on the experiment, physicists and especially astronomers sometimes assume that both the 
detected signal and the resolution functions are Gaussians and use this relation in order to estimate the 
true width of their signal. 
 

2sin
m

kaI I
ka

⎛ ⎞= ⎜ ⎟
⎝ ⎠

2
2 sincosm

kaI I kd
ka
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2
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6.  Proof of the Convolution Theorem (Optional) 

In section 1 we defined a convolution. Now take the FT of this: 

 ∫∫∫
∞

∞−

−
∞

∞−

∞

∞−

− −== dxeduuxgufdxexckC ikxikx )()(
2
1)(

2
1)(

ππ
 

Now change the order of integration, then introduce a new variable v = x − u and write ikx = ik(v+u): 

      ∫∫∫∫
∞

∞−

−
∞

∞−

−
∞

∞−

−
∞

∞−

==−= )()(2)()(
2
1)()(

2
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ππ
.  

 
We can use the convolution theorem to prove Parseval’s formula for Fourier Transforms. 
 
7.  Parseval’s Formula 
This is analogous to the result discussed for Fourier series. It is important as it relates the total signals 
integrated over either set of variables. 

Relating f(x) and F(k),   2 2| ( ) | | ( ) |dk F k dx f x
∞ ∞

−∞ −∞

=∫ ∫    or F(ω) and f(t),     2 2| ( ) | | ( ) |d F dt f tω ω
∞ ∞

−∞ −∞

=∫ ∫  

For example, when are considering Fraunhofer diffraction, for f(x) and F(k) this formula means the total 
amount of light forming a diffraction pattern on the screen is equal to the total amount of light passing 
through the aperture; or for F(ω) and f(t), the total amount of light that is recorded by the spectrometer 
(dispersed according to frequency) is equal to the total amount of light that entered the detector in that 
time interval. 
 
Proof (optional) 
A convolution has form    ∫

∞

∞−
−=∗= duuxgufgfxc )()()( .  

Let us choose to make a convolution of f with itself. And since the definition is true for all x including x = 

0 we are free to put x = 0:  2(0) ( ) ( ) | ( ) |c duf u f u du f u
∞ ∞

−∞ −∞

= − =∫ ∫ . (1) 

Using the convolution theorem we know that C(k)= 22 ( ) ( ) 2 | ( ) |F k F k F kπ π− = .  

We back transform C(k):   ∫
∞

∞−

= dkekCxc ikx)(
2
1)(
π

  

And again put x = 0:           2 21 2(0) ( ) | ( ) | | ( ) |
2 2

c dkC k dk F k dk F kπ
π π

∞ ∞ ∞

−∞ −∞ −∞

= = =∫ ∫ ∫ .   (2) 

Equating the two expressions (1) and (2) for c(0), we have proved Parseval’s theorem. 
 
 


